Line 19: Line 19:
 
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | Discrete Fourier Transform Pairs and Properties  [[More on CT Fourier transform|(info)]]
 
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | Discrete Fourier Transform Pairs and Properties  [[More on CT Fourier transform|(info)]]
 
|-
 
|-
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse
+
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition Discrete Fourier Transform and its Inverse
 
|-
 
|-
| align="right" style="padding-right: 1em;" |  [[Discrete Fourier Transform|Discrete Fourier Transform]]  
+
| Let x[n] be a periodic DT signal, with period N.
 +
|-
 +
| align="right" style="padding-right: 1em;" |  N-point [[Discrete Fourier Transform|Discrete Fourier Transform]]  
 
| <math>X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, </math>
 
| <math>X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Inverse Discrete Fourier Transform  
+
| align="right" style="padding-right: 1em;" | Inverse Discrete Fourier Transform
 
| <math>\,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \,</math>
 
| <math>\,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \,</math>
 
|}
 
|}
Line 35: Line 37:
 
| <math> x[n] \  \text{ (period } N) </math>
 
| <math> x[n] \  \text{ (period } N) </math>
 
| <math>\longrightarrow</math>
 
| <math>\longrightarrow</math>
| <math> X[k] \  \  \text{ (period } N) </math>
+
| <math> X_N[k] \  \  (N \text{ point DFT) </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |   
 
| align="right" style="padding-right: 1em;" |   

Revision as of 13:48, 27 November 2011

If you enjoy using this collective table of formulas, please consider donating to Project Rhea or becoming a sponsor. DonateNow.png


Discrete Fourier Transform

Please help building this page!

Discrete Fourier Transform Pairs and Properties (info)
Definition Discrete Fourier Transform and its Inverse
Let x[n] be a periodic DT signal, with period N.
N-point Discrete Fourier Transform $ X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, $
Inverse Discrete Fourier Transform $ \,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \, $
Discrete Fourier Transform Pairs (info)
$ x[n] \ \text{ (period } N) $ $ \longrightarrow $ $ X_N[k] \ \ (N \text{ point DFT) $
$ \ \sum_{k=-\infty}^\infty \delta[n+Nk] $ $ \ 1 \text{ (period } N) $
$ \ 1 \text{ (period } N) $ $ \ N\delta[k] $
$ \ e^{j2\pi k_0 n} $ $ \ N\delta[((k - k_0))_N] $
$ \ \cos(\frac{2\pi}{N}k_0n) $ $ \ \frac{N}{2}(\delta[((k - k_0))_N] + \delta[((k+k_0))_N]) $
Discrete Fourier Transform Properties
$ x[n] \ $ $ \longrightarrow $ $ X[k] \ $
Linearity $ ax[n]+by[n] \ $ $ aX[k]+bY[k] \ $
Circular Shift $ x[((n-m))_N] \ $ $ X[k]e^{(-j\frac{2 \pi}{N}km)} \ $
Duality $ X[n] \ $ $ NX[((-k))_N] \ $
Multiplication $ x[n]y[n] \ $ $ \frac{1}{N} X[k]\circledast Y[k], \ \circledast \text{ denotes the circular convolution} $
Convolution $ x(t) \circledast y(t) \ $ $ X[k]Y[k] \ $
time reversal $ \ x(-t) $ $ \ X(-f) $
Other Discrete Fourier Transform Properties
Parseval's Theorem $ \sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^2 $

Back to Collective Table

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009