Line 19: | Line 19: | ||
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | Discrete Fourier Transform Pairs and Properties [[More on CT Fourier transform|(info)]] | ! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | Discrete Fourier Transform Pairs and Properties [[More on CT Fourier transform|(info)]] | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition Discrete Fourier Transform and its Inverse |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | [[Discrete Fourier Transform|Discrete Fourier Transform]] | + | | Let x[n] be a periodic DT signal, with period N. |
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | N-point [[Discrete Fourier Transform|Discrete Fourier Transform]] | ||
| <math>X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, </math> | | <math>X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Inverse Discrete Fourier Transform | + | | align="right" style="padding-right: 1em;" | Inverse Discrete Fourier Transform |
| <math>\,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \,</math> | | <math>\,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \,</math> | ||
|} | |} | ||
Line 35: | Line 37: | ||
| <math> x[n] \ \text{ (period } N) </math> | | <math> x[n] \ \text{ (period } N) </math> | ||
| <math>\longrightarrow</math> | | <math>\longrightarrow</math> | ||
− | | <math> | + | | <math> X_N[k] \ \ (N \text{ point DFT) </math> |
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | |
Revision as of 13:48, 27 November 2011
If you enjoy using this collective table of formulas, please consider donating to Project Rhea or becoming a sponsor. |
Discrete Fourier Transform
Please help building this page!
- You can copy and paste the formulas from these pages:
Discrete Fourier Transform Pairs and Properties (info) | |
---|---|
Definition Discrete Fourier Transform and its Inverse | |
Let x[n] be a periodic DT signal, with period N. | |
N-point Discrete Fourier Transform | $ X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, $ |
Inverse Discrete Fourier Transform | $ \,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \, $ |
Discrete Fourier Transform Pairs (info) | |||
---|---|---|---|
$ x[n] \ \text{ (period } N) $ | $ \longrightarrow $ | $ X_N[k] \ \ (N \text{ point DFT) $ | |
$ \ \sum_{k=-\infty}^\infty \delta[n+Nk] $ | $ \ 1 \text{ (period } N) $ | ||
$ \ 1 \text{ (period } N) $ | $ \ N\delta[k] $ | ||
$ \ e^{j2\pi k_0 n} $ | $ \ N\delta[((k - k_0))_N] $ | ||
$ \ \cos(\frac{2\pi}{N}k_0n) $ | $ \ \frac{N}{2}(\delta[((k - k_0))_N] + \delta[((k+k_0))_N]) $ |
Discrete Fourier Transform Properties | |||
---|---|---|---|
$ x[n] \ $ | $ \longrightarrow $ | $ X[k] \ $ | |
Linearity | $ ax[n]+by[n] \ $ | $ aX[k]+bY[k] \ $ | |
Circular Shift | $ x[((n-m))_N] \ $ | $ X[k]e^{(-j\frac{2 \pi}{N}km)} \ $ | |
Duality | $ X[n] \ $ | $ NX[((-k))_N] \ $ | |
Multiplication | $ x[n]y[n] \ $ | $ \frac{1}{N} X[k]\circledast Y[k], \ \circledast \text{ denotes the circular convolution} $ | |
Convolution | $ x(t) \circledast y(t) \ $ | $ X[k]Y[k] \ $ | |
time reversal | $ \ x(-t) $ | $ \ X(-f) $ |
Other Discrete Fourier Transform Properties | |
---|---|
Parseval's Theorem | $ \sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^2 $ |