Line 73: | Line 73: | ||
| <math> NX[((-k))_N] \ </math> | | <math> NX[((-k))_N] \ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Multiplication |
− | | <math>x[n]y[n] \ </math> | + | | <math> x[n]y[n] \ </math> |
| | | | ||
− | | <math> | + | | <math> \frac{1}{N} X[k]\circledast Y[k], \ \circledast \text{ denotes the circular convolution} </math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Convolution |
− | | <math>x(t) | + | | <math>x(t) \circledast y(t) \ </math> |
| | | | ||
− | | <math> X | + | | <math> X[k]Y[k] \ </math> |
|- | |- | ||
| align="right" style="padding-right: 1em;" | time reversal | | align="right" style="padding-right: 1em;" | time reversal | ||
Line 93: | Line 93: | ||
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other Discrete Fourier Transform Properties | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other Discrete Fourier Transform Properties | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Parseval's Theorem |
− | | <math> | + | | <math> \sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^2 </math> |
|} | |} | ||
---- | ---- |
Revision as of 11:33, 25 November 2011
If you enjoy using this collective table of formulas, please consider donating to Project Rhea or becoming a sponsor. |
Discrete Fourier Transform
Please help building this page!
- Let's try to follow the same table syntax as for this table
- You can copy and paste the formulas from these pages:
Discrete Fourier Transform Pairs and Properties (info) | |
---|---|
Definition CT Fourier Transform and its Inverse | |
Discrete Fourier Transform | $ X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, $ |
Inverse Discrete Fourier Transform | $ \,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \, $ |
Discrete Fourier Transform Pairs (info) | |||
---|---|---|---|
$ x[n] \ $ | $ \longrightarrow $ | $ X[k] \ $ | |
name | $ type signal here\ $ | $ type transform here \! \ $ | |
name | $ type signal here \ $ | $ type transform here $ |
Discrete Fourier Transform Properties | |||
---|---|---|---|
$ x[n] \ $ | $ \longrightarrow $ | $ X[k] \ $ | |
Linearity | $ ax[n]+by[n] \ $ | $ aX[k]+bY[k] \ $ | |
Circular Shift | $ x[((n-m))_N] \ $ | $ X[k]e^{(-j\frac{2 \pi}{N}km)} \ $ | |
Duality | $ X[n] \ $ | $ NX[((-k))_N] \ $ | |
Multiplication | $ x[n]y[n] \ $ | $ \frac{1}{N} X[k]\circledast Y[k], \ \circledast \text{ denotes the circular convolution} $ | |
Convolution | $ x(t) \circledast y(t) \ $ | $ X[k]Y[k] \ $ | |
time reversal | $ \ x(-t) $ | $ \ X(-f) $ |
Other Discrete Fourier Transform Properties | |
---|---|
Parseval's Theorem | $ \sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^2 $ |