Line 1: Line 1:
[[Category:ECE438Fall2011Boutin]]
+
<br>
[[Category:homework]]
+
[[Category:digital signal processing]]
+
[[Category:digital image processing]]
+
[[Category:ECE438]]
+
  
 +
= Homework 8, [[ECE438]], Fall 2011, [[User:Mboutin|Prof. Boutin]] =
  
=Homework 8, [[ECE438]], Fall 2011, [[user:mboutin|Prof. Boutin]]=
+
Due Wednesday November 30, 2011 (in class)  
Due Wednesday November 30, 2011 (in class)
+
----
+
==Question ==
+
  
Consider the following FIR filter:
+
----
 +
 
 +
== Question  ==
 +
 
 +
Consider the following FIR filter:  
  
 
<math>h[m,n]:
 
<math>h[m,n]:
Line 20: Line 18:
 
n=-1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8}  
 
n=-1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8}  
 
\end{array}
 
\end{array}
</math>
+
</math>  
+
a) Write a difference equation that can be used to implement this filter.
+
  
b) Is this filter separable? Answer yes/no and justify your answer.
+
a) Write a difference equation that can be used to implement this filter.  
  
c) Compute the CSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v).
+
b) Is this filter separable? Answer yes/no and justify your answer.
 +
 
 +
c) Compute the CSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v).  
  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
Line 44: Line 42:
 
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 
\end{array}
 
\end{array}
</math>
+
</math>  
  
----
 
== Discussion ==
 
Write your questions/comments here.
 
 
----
 
----
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]
+
 
 +
== Discussion  ==
 +
 
 +
Write your questions/comments here.
 +
 
 +
 
 +
 
 +
I wrote a Matlab program that can check your answers. You can take it as reference but don't copy the answer directly. -Bo
 +
 
 +
[https://projectrhea.org/rhea/images/7/7e/HW8.zip Hw8-matlabcode.rar]
 +
 
 +
----
 +
 
 +
[[2011 Fall ECE 438 Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]
 +
 
 +
[[Category:ECE438Fall2011Boutin]] [[Category:Homework]] [[Category:Digital_signal_processing]] [[Category:Digital_image_processing]] [[Category:ECE438]]

Revision as of 14:34, 20 November 2011


Homework 8, ECE438, Fall 2011, Prof. Boutin

Due Wednesday November 30, 2011 (in class)


Question

Consider the following FIR filter:

$ h[m,n]: \begin{array}{cccc} & m=-1 & m=0 & m=1 \\ n=1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ n=0&-\frac{1}{4} & 1 & -\frac{1}{4} \\ n=-1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{array} $

a) Write a difference equation that can be used to implement this filter.

b) Is this filter separable? Answer yes/no and justify your answer.

c) Compute the CSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v).

d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?

$ g[m,n]: \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \end{array} $


Discussion

Write your questions/comments here.


I wrote a Matlab program that can check your answers. You can take it as reference but don't copy the answer directly. -Bo

Hw8-matlabcode.rar


Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison