Line 4: | Line 4: | ||
==Question 1== | ==Question 1== | ||
+ | a) | ||
+ | <math>y[n]= \frac{x[n]+x[n-1]}{2} </math><br> | ||
+ | |||
+ | Applying Z-transform on both sides and grouping terms, we can obtain the transfer function<br/> | ||
+ | |||
+ | <math>\begin{align} | ||
+ | Y[z]&= \frac{X[z]+X[z].z^{-1}}{2} \\ | ||
+ | \frac{Y[z]}{X[z]}&= \frac{1+z^{-1}}{2} \\ | ||
+ | H[z] &= \frac{1+z^{-1}}{2} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | Frequency Response H_1(<span class="texhtml">ω</span>),<br> <math>\begin{align} | ||
+ | H[e^{j\omega }] &= \frac{1+e^{-j\omega }}{2} \\ | ||
+ | &= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}+e^{-j\frac{\omega }{2}}}{2} \right) \\ | ||
+ | &= e^{-j\frac{\omega }{2}} cos \left( \frac{\omega }{2} \right) \\ | ||
+ | \end{align}</math> | ||
[[Image:HW6Q1fig1.jpg]] | [[Image:HW6Q1fig1.jpg]] | ||
+ | b) | ||
+ | |||
+ | <math>y_2[n]= \frac{x[n]-x[n-1]}{2}</math> | ||
+ | |||
+ | Applying Z-transform on both sides and grouping terms, we can obtain the transfer function<br> | ||
+ | |||
+ | <math>\begin{align} | ||
+ | Y_2[z]&= \frac{X[z]-X[z].z^{-1}}{2} \\ | ||
+ | \frac{Y_2[z]}{X[z]}&= \frac{1-z^{-1}}{2} \\ | ||
+ | H_2[z] &= \frac{1-z^{-1}}{2} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | Frequency Response H_2(<span class="texhtml">ω</span>),<br> <math>\begin{align} | ||
+ | H_2[e^{j\omega }] &= \frac{1-e^{-j\omega }}{2} \\ | ||
+ | &= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2} \right) \\ | ||
+ | &= je^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2j} \right) \\ | ||
+ | &= je^{-j\frac{\omega }{2}} sin \left( \frac{\omega }{2} \right) \\ | ||
+ | \end{align}</math> | ||
+ | [[Image:HW6Q1fig2.jpg]] | ||
---- | ---- | ||
==Question 2== | ==Question 2== |
Revision as of 10:02, 29 October 2011
Contents
Homework 6, ECE438, Fall 2011, Prof. Boutin
Question 1
a)
$ y[n]= \frac{x[n]+x[n-1]}{2} $
Applying Z-transform on both sides and grouping terms, we can obtain the transfer function
$ \begin{align} Y[z]&= \frac{X[z]+X[z].z^{-1}}{2} \\ \frac{Y[z]}{X[z]}&= \frac{1+z^{-1}}{2} \\ H[z] &= \frac{1+z^{-1}}{2} \\ \end{align} $
Frequency Response H_1(ω),
$ \begin{align} H[e^{j\omega }] &= \frac{1+e^{-j\omega }}{2} \\ &= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}+e^{-j\frac{\omega }{2}}}{2} \right) \\ &= e^{-j\frac{\omega }{2}} cos \left( \frac{\omega }{2} \right) \\ \end{align} $
b)
$ y_2[n]= \frac{x[n]-x[n-1]}{2} $
Applying Z-transform on both sides and grouping terms, we can obtain the transfer function
$ \begin{align} Y_2[z]&= \frac{X[z]-X[z].z^{-1}}{2} \\ \frac{Y_2[z]}{X[z]}&= \frac{1-z^{-1}}{2} \\ H_2[z] &= \frac{1-z^{-1}}{2} \\ \end{align} $
Frequency Response H_2(ω),
$ \begin{align} H_2[e^{j\omega }] &= \frac{1-e^{-j\omega }}{2} \\ &= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2} \right) \\ &= je^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2j} \right) \\ &= je^{-j\frac{\omega }{2}} sin \left( \frac{\omega }{2} \right) \\ \end{align} $
Question 2
Question 3
Question 4
Question 5
Back to Homework 6
Back to ECE 438 Fall 2011