Line 68: Line 68:
 
&= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\
 
&= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\
 
&= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}-j2\pi k} + e^{\frac{j2\pi (n-1)k}{4}}) \\
 
&= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}-j2\pi k} + e^{\frac{j2\pi (n-1)k}{4}}) \\
 +
&= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n-2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\
 
\end{align}</math>
 
\end{align}</math>
 +
 +
if <math>n\neq 1 or 2</math>, using geometric series summation formula we have
 +
 +
<math>x[n]=\frac{1}{4}( \frac{1-e^{j2\pi (n-2)}{1-e^{\frac{j2\pi (n-2)}{4}} + \frac{1-e^{j2\pi (n-1)}{1-e^{\frac{j2\pi (n-1)}{4}} ) = 0</math>
  
 
----
 
----

Revision as of 15:12, 13 October 2011

Homework 4, ECE438, Fall 2011, Prof. Boutin


Question 1

a) For $ k=0,1,...,N-1 $

$ \begin{align} X_N(k) &= \sum_{k=0}^{N-1}x[n]e^{-\frac{j2\pi nk}{N}} \\ &= x[0]e^{-\frac{j2\pi 0\cdot k}{N}} \\ &= 1 \end{align} $

b) Using Euler Formula, we have

$ \begin{align} x[n] &= e^{\frac{j\pi n}{3}}(\frac{ e^{\frac{j\pi n}{6}} + e^{-\frac{j\pi n}{6}} }{2}) \\ &= \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}} \end{align} $

Observing that $ x[n] $ has fundamental period $ N=12 $. Using IDFT, we have

$ \begin{align} x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\ \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}} &= \frac{1}{12}\sum_{n=0}^{11}e^{\frac{j2\pi nk}{12}} \end{align} $

By comparison, we know for $ k=0,1,...,11 $

$ X_{12}[k] = \left\{ \begin{array}{ll} 6, & k=1,3 \\ 0, & otherwise. \end{array} \right. $

c)

$ x[n]=(\frac{1}{\sqrt 2} + j\frac{1}{\sqrt 2})^n = (e^{\frac{j\pi}{4}})^n $

Then $ x[n] $ has fundamental period $ N=8 $. Using IDFT, we have

$ \begin{align} x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\ e^{\frac{j\pi n}{4}} &= \frac{1}{8}\sum_{n=0}^{7}e^{\frac{j2\pi nk}{8}} \end{align} $

By comparison, we know for $ k=0,1,...,7 $

$ X_{8}[k] = \left\{ \begin{array}{ll} 8, & k=1 \\ 0, & otherwise. \end{array} \right. $


Question 2

Observing that $ X(k) $ has a fundamental period $ N=4 $

$ \begin{align} x[n] &= \frac{1}{N}\sum_{k=0}^{N-1}(e^{j \pi k }+e^{-j \frac{\pi}{2} k})e^{\frac{j2\pi nk}{N}} \\ &= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\ &= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}-j2\pi k} + e^{\frac{j2\pi (n-1)k}{4}}) \\ &= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n-2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\ \end{align} $

if $ n\neq 1 or 2 $, using geometric series summation formula we have

$ x[n]=\frac{1}{4}( \frac{1-e^{j2\pi (n-2)}{1-e^{\frac{j2\pi (n-2)}{4}} + \frac{1-e^{j2\pi (n-1)}{1-e^{\frac{j2\pi (n-1)}{4}} ) = 0 $


Back to Homework 4

Back to ECE 438 Fall 2011

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison