Line 14: Line 14:
 
----
 
----
 
==Answer 1==
 
==Answer 1==
Write it here
+
<math>x[n]= e^{-j \frac{1}{5} \pi n}=cos(\frac{\pi n}{5})+jsin(\frac{\pi n}{5})</math>.
 +
 
 +
period=10, therefor, by comparing with<math>x[n]=e^{-j2\pi k_0 n/N}</math>. 
 +
 
 +
we get <math>N=10</math>,<math>k_0=1</math>.
 +
 
 +
From DFT transfer pair, <math>X[k]=10\delta[k-1]</math>. repeated with period 10.
 
----
 
----
 
==Answer 2==
 
==Answer 2==

Revision as of 07:15, 2 October 2011


Practice Problem

Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= e^{-j \frac{1}{5} \pi n} $.

How does your answer related to the Fourier series coefficients of x[n]?

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n]= e^{-j \frac{1}{5} \pi n}=cos(\frac{\pi n}{5})+jsin(\frac{\pi n}{5}) $.

period=10, therefor, by comparing with$ x[n]=e^{-j2\pi k_0 n/N} $.

we get $ N=10 $,$ k_0=1 $.

From DFT transfer pair, $ X[k]=10\delta[k-1] $. repeated with period 10.


Answer 2

Write it here


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva