Line 14: Line 14:
 
----
 
----
 
==Answer 1==
 
==Answer 1==
Write it here
+
<math>X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} =  \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n}
 +
 
 +
= 1 + (-j \cdot e^{-j \frac{\pi k}{2}} ) + (-1 \cdot e^{-j \frac{2\pi k}{2}} ) + (j \cdot e^{-j \frac{3\pi k}{2}} )</math>
 +
 
 +
<math>
 +
= 1 + (-j) \cdot (-j)^k + (-1) \cdot (1)^k + (j) \cdot (j)^k
 +
</math>
 +
<math>
 +
= (-j)^{k+1} + (j)^{k+1}
 +
</math>
 +
 
 +
 
 
----
 
----
 
==Answer 2==
 
==Answer 2==

Revision as of 15:28, 29 September 2011


Practice Problem

Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= (-j)^n $.

How does your answer related to the Fourier series coefficients of x[n]?

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} = \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n} = 1 + (-j \cdot e^{-j \frac{\pi k}{2}} ) + (-1 \cdot e^{-j \frac{2\pi k}{2}} ) + (j \cdot e^{-j \frac{3\pi k}{2}} ) $

$ = 1 + (-j) \cdot (-j)^k + (-1) \cdot (1)^k + (j) \cdot (j)^k $ $ = (-j)^{k+1} + (j)^{k+1} $



Answer 2

Write it here


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch