Line 24: Line 24:
  
 
<math>Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0})</math>
 
<math>Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0})</math>
 
+
:<span style="color:orange">Instructor's comment: It is a bit confusing to use k as a complex variable. Usually, k represents an integer. -pm </span>
 
=== Answer 2===
 
=== Answer 2===
 
I agreed with above, it should be  <math>z_0^n</math> not <math>z_0^2</math>, otherwise <math>z_0^2</math> is just a constant and the transform will just be <math>z_0^2 { X \left( z \right)} </math>
 
I agreed with above, it should be  <math>z_0^n</math> not <math>z_0^2</math>, otherwise <math>z_0^2</math> is just a constant and the transform will just be <math>z_0^2 { X \left( z \right)} </math>
  
<span style="color:green">TA's comments: Good catch and reasoning.</span>
+
:<span style="color:green">TA's comments: Good catch and reasoning.</span>
  
 
<math>Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} =  X \left( \frac{z}{z_0}\right) </math>
 
<math>Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} =  X \left( \frac{z}{z_0}\right) </math>

Revision as of 03:16, 3 October 2011

Properties of the Z-transform

Prove the following scaling property of the z-transform:

$ z_0^2 x[n] \rightarrow X \left( \frac{z}{z_0}\right) $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

I think there is a mistake, it should be $ z_0^n $ instead of $ z_0^2 $.

proof:

$ x'[n]=z_0^n x[n] $

$ Z[x'[n]]=\sum_{n=-\infty}^{\infty}x'[n]z^{-n}=\sum_{n=-\infty}^{\infty}z_0^n x[n]z^{-n}=\sum_{n=-\infty}^{\infty}x[n](\frac{z}{z_0})^{-n} $

$ let k=\frac{z}{z_0} $

$ Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0}) $

Instructor's comment: It is a bit confusing to use k as a complex variable. Usually, k represents an integer. -pm

Answer 2

I agreed with above, it should be $ z_0^n $ not $ z_0^2 $, otherwise $ z_0^2 $ is just a constant and the transform will just be $ z_0^2 { X \left( z \right)} $

TA's comments: Good catch and reasoning.

$ Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} = X \left( \frac{z}{z_0}\right) $


Answer 3

$ Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} = X \left( \frac{z}{z_0}\right) $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach