Line 17: Line 17:
 
By Euler's formular
 
By Euler's formular
  
<math> e^{j \omega}  = cos(j \omega) + i*sin(j \omega) </math>
+
<math> e^{j \omega}  = cos( \omega) + i*sin( \omega) </math>
  
 
hence,
 
hence,
  
<math>\left| e^{j \omega} \right| =  \left|cos(j \omega) + i*sin(j \omega) \right| = \sqrt{cos^2(j \omega) + sin^2(j \omega)} = 1 </math>
+
<math>\left| e^{j \omega} \right| =  \left|cos( \omega) + i*sin( \omega) \right| = \sqrt{cos^2( \omega) + sin^2( \omega)} = 1 </math>
  
 
===Answer 2===
 
===Answer 2===

Revision as of 07:24, 11 September 2011

What is the norm of a complex exponential?

After class today, a student asked me the following question:

$ \left| e^{j \omega} \right| = ? $

Please help answer this question.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

By Euler's formular

$ e^{j \omega} = cos( \omega) + i*sin( \omega) $

hence,

$ \left| e^{j \omega} \right| = \left|cos( \omega) + i*sin( \omega) \right| = \sqrt{cos^2( \omega) + sin^2( \omega)} = 1 $

Answer 2

becasue: $ e^{jx} =cos(x)+ jsin(x) $

$ | e^{j \omega}|=|cos(\omega) + i*sin(\omega)|=\sqrt{cos(\omega)^2 +sin(\omega)^2}=1 $

Answer 3

Write it here


Back to ECE438 Fall 2011 Prof. Boutin

Back to ECE438

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn