Line 23: | Line 23: | ||
\lim_{N\rightarrow\infty}\sum_{n=1}^Nf\left( x_n^* \right)\,\Delta x_n | \lim_{N\rightarrow\infty}\sum_{n=1}^Nf\left( x_n^* \right)\,\Delta x_n | ||
− | =\lim_{N\rightarrow\infty}\sum_{n=1}^N2\cdot\left( \ | + | =\lim_{N\rightarrow\infty}\sum_{n=1}^N2\cdot\left( \dfrac nN \right)^3\cdot\dfrac1N |
</math> | </math> | ||
[[Category:MA181Fall2011Bell]] | [[Category:MA181Fall2011Bell]] |
Revision as of 15:06, 5 September 2011
Homework 2 collaboration area
Here's some interesting stuff:
$ \sum_{n=1}^N 1 = \dfrac11N $
$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $
$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $
$ \vdots $ $ \vdots $
$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N} $
S5.2_45
$ f\left( x \right)=2x^3 $
$ \lim_{N\rightarrow\infty}\sum_{n=1}^Nf\left( x_n^* \right)\,\Delta x_n =\lim_{N\rightarrow\infty}\sum_{n=1}^N2\cdot\left( \dfrac nN \right)^3\cdot\dfrac1N $