Line 23: Line 23:
 
:<span style="color:green">Instructor's comments: Nice and clear solution! One can also justify the answer using the shifting property directly, which would save a couple of steps.-pm </span>
 
:<span style="color:green">Instructor's comments: Nice and clear solution! One can also justify the answer using the shifting property directly, which would save a couple of steps.-pm </span>
 
===Answer 2===
 
===Answer 2===
Write it here.
+
<math> x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df
 +
</math>
 +
 
 +
In order for the following to be true,
 +
<math> x(t)= e^{j \pi t} </math>
 +
 
 +
<math> X(f) = \delta(f - \frac{1}{2}) </math>
 +
 
 +
because
 +
 
 +
<math> x(t) = \int_{-\infty}^{\infty} \delta(f - \frac{1}{2})e^{j2\pi ft} df = e^{j \pi t}
 +
</math> with careful inspection.
 +
 
 +
 
 
===Answer 3===
 
===Answer 3===
 
write it here.
 
write it here.
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 14:37, 6 September 2011

Continuous-time Fourier transform of a complex exponential

What is the Fourier transform of $ x(t)= e^{j \pi t} $? Justify your answer.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Guess: $ X(f)=\delta (f-\frac{1}{2}) $

Proof:

$ x(t)=\int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j\pi t} df = e^{j\pi t} \int_{-\infty}^{\infty} \delta (f-\frac{1}{2}) df = e^{j\pi t} $

using the fact that $ \delta (t-T)f(t) = \delta (t-T)f(T) $

Instructor's comments: Nice and clear solution! One can also justify the answer using the shifting property directly, which would save a couple of steps.-pm

Answer 2

$ x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df $

In order for the following to be true, $ x(t)= e^{j \pi t} $

$ X(f) = \delta(f - \frac{1}{2}) $

because

$ x(t) = \int_{-\infty}^{\infty} \delta(f - \frac{1}{2})e^{j2\pi ft} df = e^{j \pi t} $ with careful inspection.


Answer 3

write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang