Line 5: Line 5:
 
<u></u><u>Definition 1</u>  
 
<u></u><u>Definition 1</u>  
  
<u></u>A system is called '''linear''' if for any constants <math>a,b\in </math>&nbsp; ''all complex numbers'' and for any input signals <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> with response <span class="texhtml">''y''<sub>1</sub>(''t''),''y''<sub>2</sub>(''t'')</span>, respectively, the system's response to <span class="texhtml">''a''''x'''''<b><sub>1</sub>(''t'') + ''b'''</b>''x''<sub>2</sub>(''t'')</span> is <span class="texhtml">''a''''y'''''<b><sub>1</sub>(''t'') + ''b'''</b>''y''<sub>2</sub>(''t'')</span>.  
+
<u></u>A system is called '''linear''' if for any constants <math>a,b\in </math>&nbsp; ''all complex numbers'' and for any input signals <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> with response <span class="texhtml">''y''<sub>1</sub>(''t''),''y''<sub>2</sub>(''t'')</span>, respectively, the system's response to <span class="texhtml">''a''''x'''''<b><sub>1</sub>(''t'') + ''b'''''x''<sub>2</sub>(''t'')'''''</span>'''''is <span class="texhtml" />''a''''y'''''<b><sub>1</sub>(</b>'''''t'') + ''b''''''''y''<sub>2</sub>(''t'').  
  
 
<u>Definition 2</u>  
 
<u>Definition 2</u>  
  
If <math> x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix}
+
If
 +
 
 +
<math> x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_1(t) </math>
 +
 
 +
<math> x_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_2(t) </math>
 +
 
 +
then
 +
 
 +
<math> ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) </math>
 +
 
 +
for any <math>a,b\in </math>&nbsp; ''all complex numbers'', any <math>x_1(t), x_2(t)</math> then we say the system is linear.

Revision as of 06:22, 6 May 2011

Linearity

There are three definitions we discussed in class for linearity.

Definition 1

A system is called linear if for any constants $ a,b\in $  all complex numbers and for any input signals x1(t),x2(t) with response y1(t),y2(t), respectively, the system's response to a'x1(t) + bx2(t)</span>is <span class="texhtml" />a'y<b>1(t) + b'''y2(t).

Definition 2

If

$ x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_1(t) $

$ x_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_2(t) $

then

$ ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) $

for any $ a,b\in $  all complex numbers, any $ x_1(t), x_2(t) $ then we say the system is linear.

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett