(New page: '''Links to pages on normal subgroups:''' (1) http://mathworld.wolfram.com/NormalSubgroup.html (2) http://eom.springer.de/N/n067690.htm (3) http://www.math.uiuc.edu/~r-ash/Algebra/Chapt...)
 
Line 1: Line 1:
 +
'''Preliminary Definitions'''
 +
----
 +
Let <math>G</math> be a group and <math>N</math> be a subgroup of <math>G</math>.
 +
 +
The element <math>gng^{-1}</math> is called the ''conjugate'' of <math>n\in N</math> by <math>g</math>.
 +
 +
The set <math>gNg^{-1} =\{ {gng^{-1} | n\in N}\}</math> is called the ''conjugate of <math>N</math> by <math>g</math>.''
 +
 +
The element <math>g</math> ''normalizes'' <math>N</math> if <math>gNg^{-1} = N</math>.
 +
 +
A subgroup <math>N</math> of a group <math>G</math> is said to be ''normal'' if every element of <math>G</math> normalizes <math>N</math>. That is, if <math>gNg^{-1} = N</math> for all g in G.
 +
 +
 +
'''Equivalent definitions of Normality'''
 +
----
 +
Let <math>G</math> be a group and <math>N</math> be a subgroup of <math>G</math>. The following are equivalent:
 +
 +
1. <math>gNg^{-1}\subseteq N</math> for all <math> g\in G</math>.
 +
 +
2. <math>gNg^{-1} = N</math> for all <math> g\in G</math>.
 +
 +
3. <math>gN = Ng</math> for all <math> g\in G</math>. That is, the left and right cosets are equal.
 +
 +
4. <math>N</math> is the kernel of some homomorphism on <math> G </math>.
 +
 +
 +
The equivalence of (1), (2) and (3) above is proved below:
 +
 +
Lemma: If <math> N \le G</math> then <math> (aN)(bN) = abN </math> for all <math> a,b \in G</math> <math> \Leftrightarrow </math> <math> gNg^{-1} = N </math> for all <math> g \in G</math>.
 +
 +
 +
 +
 +
 +
 
'''Links to pages on normal subgroups:'''
 
'''Links to pages on normal subgroups:'''
  
Line 5: Line 40:
 
(2) http://eom.springer.de/N/n067690.htm
 
(2) http://eom.springer.de/N/n067690.htm
  
(3) http://www.math.uiuc.edu/~r-ash/Algebra/Chapter1.pdf
+
(3) http://math.ucr.edu/home/baez/normal.html
 
+
(4) http://math.ucr.edu/home/baez/normal.html
+
  
  
 
'''References:'''
 
'''References:'''
 +
 +
- http://www.math.uiuc.edu/~r-ash/Algebra/Chapter1.pdf
  
 
- Dummit, D.S. & Foote, R.M. (1991). Abstract Algebra. United States: Prentice Hall.
 
- Dummit, D.S. & Foote, R.M. (1991). Abstract Algebra. United States: Prentice Hall.

Revision as of 13:33, 27 April 2011

Preliminary Definitions


Let $ G $ be a group and $ N $ be a subgroup of $ G $.

The element $ gng^{-1} $ is called the conjugate of $ n\in N $ by $ g $.

The set $ gNg^{-1} =\{ {gng^{-1} | n\in N}\} $ is called the conjugate of $ N $ by $ g $.

The element $ g $ normalizes $ N $ if $ gNg^{-1} = N $.

A subgroup $ N $ of a group $ G $ is said to be normal if every element of $ G $ normalizes $ N $. That is, if $ gNg^{-1} = N $ for all g in G.


Equivalent definitions of Normality


Let $ G $ be a group and $ N $ be a subgroup of $ G $. The following are equivalent:

1. $ gNg^{-1}\subseteq N $ for all $ g\in G $.

2. $ gNg^{-1} = N $ for all $ g\in G $.

3. $ gN = Ng $ for all $ g\in G $. That is, the left and right cosets are equal.

4. $ N $ is the kernel of some homomorphism on $ G $.


The equivalence of (1), (2) and (3) above is proved below:

Lemma: If $ N \le G $ then $ (aN)(bN) = abN $ for all $ a,b \in G $ $ \Leftrightarrow $ $ gNg^{-1} = N $ for all $ g \in G $.




Links to pages on normal subgroups:

(1) http://mathworld.wolfram.com/NormalSubgroup.html

(2) http://eom.springer.de/N/n067690.htm

(3) http://math.ucr.edu/home/baez/normal.html


References:

- http://www.math.uiuc.edu/~r-ash/Algebra/Chapter1.pdf

- Dummit, D.S. & Foote, R.M. (1991). Abstract Algebra. United States: Prentice Hall.

- Gallian, J.A. (2010). Contemporary Abstract Algebra. United States: Brooks/Cole.

- MA 453 lecture notes, Professor Uli Walther

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett