Line 43: Line 43:
  
 
--[[User:Kellsper|Kellsper]] 16:12, 21 April 2011 (UTC)
 
--[[User:Kellsper|Kellsper]] 16:12, 21 April 2011 (UTC)
 +
:<span style="color: blue">Instructor's comment: Good. You may shorten this explanation a bit when you write it on the exam. Just say </span>
 +
::<math class="inline"> X(z)=\frac{1}{1+3z}=\frac{1}{1-(-3z)}=\sum_{k=0}^\infty (-3z)^k</math>, since <math>|-3z|=|3z|<1</math> when <math class="inline">|z|<\frac{1}{3}</math>.
 +
::<span style="color: blue">-pm .</span>
 +
  
 
=== Answer 3  ===
 
=== Answer 3  ===

Revision as of 11:27, 21 April 2011


Practice Question on Computing the inverse z-transform

Compute the inverse z-transform of the following signal.

$ X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3} $


Share your answers below

Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --Cmcmican 22:22, 16 April 2011 (UTC)


Answer 1

$ X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k $

let n=-k

$ =\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n} $

By comparison with $ \sum_{n=-\infty}^\infty x[n] z^{-n}: $

$ x[n]=(-3)^{-n}u[-n]\, $

--Cmcmican 22:22, 16 April 2011 (UTC)

TA's comment: Good Job!
Instructor's comment: You may want to mention where you use the fact that |z|<1/3.

Answer 2

I agree, but for the missing steps on |z|<1/3, you can say

Since |z| < 1/3,  |3z| < 1

Therefore, |-3z| < 1

By comparison with the geometric series, where it diverges for |-3z| < 1, you can rewrite the problem as shown in Answer 1.

--Kellsper 16:12, 21 April 2011 (UTC)

Instructor's comment: Good. You may shorten this explanation a bit when you write it on the exam. Just say
$ X(z)=\frac{1}{1+3z}=\frac{1}{1-(-3z)}=\sum_{k=0}^\infty (-3z)^k $, since $ |-3z|=|3z|<1 $ when $ |z|<\frac{1}{3} $.
-pm .


Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009