Line 54: Line 54:
 
=== Answer 3  ===
 
=== Answer 3  ===
  
Write it here.
+
<math>
 +
X(z) = \frac{1}{1+3z} = \left(\frac{1}{3}\right)\left(\frac{1}{1-\frac{-1}{3z}}\right), |z| > \frac{1}{3}
 +
</math>
  
 +
<math>
 +
|z| > \frac{1}{3} => |\frac{1}{3z}| < 1
 +
</math>
 +
 +
<math>
 +
\begin{align}
 +
X(z) & = \left(\frac{1}{3}\right)\left(\frac{1}{1-\frac{-1}{3z}}\right) \\
 +
&= \left(\frac{1}{3z}\right) \sum_{k = 0}^{\infty} \left( -\frac{1}{3z} \right)^k \\
 +
&= \sum_{k = -\infty}^{\infty} u[k]\left(\frac{1}{3z}\right)  \left( -\frac{1}{3z} \right)^k \\
 +
&= \sum_{k = -\infty}^{\infty} u[k](-1)^k \left( \frac{1}{3z} \right)^{k +1} \\
 +
&= \sum_{k = -\infty}^{\infty} u[k](-1)^k (3z)^{-(k +1)} z^{-(k+1) } \\
 +
& \text{let n=k+1} \\
 +
&= \sum_{k = -\infty}^{\infty} u[k](-1)^{n-1} (3z)^{-n} z^{-n} \\
 +
&\text{by comparison with } \sum_{n=-\infty}^{\infty}x[n]z^{-n} \\
 +
x[n] &= (-1)^{n-1} u[n-1] \left(\frac{1}{3}\right)^n
 +
\end{align}
 +
</math>
 
----
 
----
  

Revision as of 16:42, 21 April 2011


Practice Question on Computing the inverse z-transform

Compute the inverse z-transform of the following signal.

$ X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|>\frac{1}{3} $


Share your answers below

Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --Cmcmican 22:38, 16 April 2011 (UTC)


Answer 1

$ X(z)=\frac{1}{3z}\frac{1}{(1+\frac{1}{3z})} $

since $ \Bigg|z\Bigg|>\frac{1}{3} ==>\Bigg|\frac{1}{z}\Bigg|<3 ==>\Bigg|\frac{1}{3}\frac{1}{z}\Bigg|<1 $

$ X(z)=\sum_{k=0}^\infty \frac{1}{3z}\Bigg(\frac{1}{3z}\Bigg)^k=\sum_{k=-\infty}^\infty u[k] \Bigg(\frac{1}{3}\Bigg)^{k+1}z^{-(k+1)} $

let n=k+1

$ =\sum_{n=-\infty}^\infty u[n-1]\Bigg(\frac{1}{3}\Bigg)^{n}z^{-n} $

By comparison with $ \sum_{n=-\infty}^\infty x[n] z^{-n}: $

$ x[n]=\Bigg(\frac{1}{3}\Bigg)^{n}u[n-1]\, $

--Cmcmican 22:38, 16 April 2011 (UTC)

TA's comment: I think you have a mistake here. You can check that by taking the Z-transform of your answer.

Answer 2

$ X(z)=\frac{1}{3z}\frac{1}{(1+\frac{1}{3z})}=\frac{1}{3z}\frac{1}{(1-(-\frac{1}{3z}))} $

since $ \Bigg|z\Bigg|>\frac{1}{3} ==>\Bigg|\frac{1}{z}\Bigg|<3 ==>\Bigg|\frac{1}{3}\frac{1}{z}\Bigg|<1 $

$ X(z)=\sum_{k=0}^\infty \frac{1}{3z}\Bigg(\frac{-1}{3z}\Bigg)^k=\sum_{k=-\infty}^\infty u[k] (-1)^{k}\Bigg(\frac{1}{3}\Bigg)^{k+1}z^{-(k+1)} $

let n=k+1

$ =\sum_{n=-\infty}^\infty u[n-1](-1)^{1-n}\Bigg(\frac{1}{3}\Bigg)^{n}z^{-n} $

By comparison with $ \sum_{n=-\infty}^\infty x[n] z^{-n}: $

$ x[n]=(-1)^{1-n}\Bigg(\frac{1}{3}\Bigg)^{n}u[n-1]\, $

--Srigney 12:32, 21 April 2011 (UTC)

Answer 3

$ X(z) = \frac{1}{1+3z} = \left(\frac{1}{3}\right)\left(\frac{1}{1-\frac{-1}{3z}}\right), |z| > \frac{1}{3} $

$ |z| > \frac{1}{3} => |\frac{1}{3z}| < 1 $

$ \begin{align} X(z) & = \left(\frac{1}{3}\right)\left(\frac{1}{1-\frac{-1}{3z}}\right) \\ &= \left(\frac{1}{3z}\right) \sum_{k = 0}^{\infty} \left( -\frac{1}{3z} \right)^k \\ &= \sum_{k = -\infty}^{\infty} u[k]\left(\frac{1}{3z}\right) \left( -\frac{1}{3z} \right)^k \\ &= \sum_{k = -\infty}^{\infty} u[k](-1)^k \left( \frac{1}{3z} \right)^{k +1} \\ &= \sum_{k = -\infty}^{\infty} u[k](-1)^k (3z)^{-(k +1)} z^{-(k+1) } \\ & \text{let n=k+1} \\ &= \sum_{k = -\infty}^{\infty} u[k](-1)^{n-1} (3z)^{-n} z^{-n} \\ &\text{by comparison with } \sum_{n=-\infty}^{\infty}x[n]z^{-n} \\ x[n] &= (-1)^{n-1} u[n-1] \left(\frac{1}{3}\right)^n \end{align} $


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn