Line 72: Line 72:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
| align="right" style="padding-right: 1em;" | DTFT of a Periodic Square Wave
+
| align="right" style="padding-right: 1em;" | DTFT of a Periodic Square Wave  
 
|  
 
|  
<math>\left\{\begin{array}{ll}1, &  |n|<N_1,\\ 0, & N_1<|n|<=\frac{N}{2}\end{array} \right.</math>
+
<math>\left\{\begin{array}{ll}1, &  |n|<N_1,\\ 0, & N_1<|n|<=\frac{N}{2}\end{array} \right.</math>  
  
and
+
and  
  
<math>x[n+N]=x[n]</math>
+
<span class="texhtml">''x''[''n'' + ''N''] = ''x''[''n'']</span>  
  
 
|  
 
|  
Line 85: Line 85:
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 +
| <math>\sum^{\infty}_{k=-\infty}\delta[n-kN]</math>
 
|  
 
|  
|  
+
| <math>\frac{2\pi}{N}\sum^{\infty}_{k=-\infty}\delta(\frac{2\pi k}{N})</math>
|
+
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 +
| <math>\delta[n]</math>
 
|  
 
|  
|  
+
| 1
|
+
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
|  
+
| <math>u[n]</math><br>
 
|  
 
|  
 
|  
 
|  

Revision as of 12:32, 10 April 2011

Discrete-time Fourier Transform Pairs and Properties
DT Fourier transform and its Inverse
DT Fourier Transform $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $
Inverse DT Fourier Transform $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $
DT Fourier Transform Pairs
$ x[n] \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) \ $
DTFT of a complex exponential $ e^{jw_0n} \ $ $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
(info) DTFT of a rectangular window $ w[n]= \ $ add formula here
$ a^{n} u[n], |a|<1 \ $ $ \frac{1}{1-ae^{-j\omega}} \ $
$ (n+1)a^{n} u[n], |a|<1 \ $ $ \frac{1}{(1-ae^{-j\omega})^2} \ $
$ \sin\left(\omega _0 n\right) u[n] \ $ $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $
c'o's0n) $ \pi \sum^{\infty}_{k=-\infty} (\delta(\omega-\omega_0 + 2\pi k)+\delta(\omega+\omega_0-2\pi k)) $
s'i'n0n) $ \frac{\pi}{j} \sum^{\infty}_{k=-\infty} (\delta(\omega-\omega_0 + 2\pi k)+\delta(\omega+\omega_0-2\pi k)) $
1 $ 2\pi\sum^{\infty}_{k=-\infty}\delta(\omega-2\pi k) $
DTFT of a Periodic Square Wave

$ \left\{\begin{array}{ll}1, & |n|<N_1,\\ 0, & N_1<|n|<=\frac{N}{2}\end{array} \right. $

and

x[n + N] = x[n]

$ 2\pi\sum^{\infty}_{k=-\infty}a_k\delta(\omega-\frac{2\pi k}{N}) $
$ \sum^{\infty}_{k=-\infty}\delta[n-kN] $ $ \frac{2\pi}{N}\sum^{\infty}_{k=-\infty}\delta(\frac{2\pi k}{N}) $
$ \delta[n] $ 1
$ u[n] $
DT Fourier Transform Properties
$ x[n] \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) \ $
multiplication property $ x[n]y[n] \ $ $ \frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x[n]*y[n] \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x[-n] $ $ \ X(-\omega) $
Differentiation in frequency $ \ nx[n] $ $ \ j\frac{d}{d\omega}X(\omega) $
Linearity a'x[n] + b'''y[n] a'X(ω) + b'''Y(ω)
Time Shifting x[nn0] $ e^{-j\omega n_0}X(\omega) $
Frequency Shifting $ e^{j\omega_0 n}x[n] $ X(ω − ω0)
Conjugation x * [n] X * ( − ω)
Time Expansion $ x_(k) [n]=\left\{\begin{array}{ll}x[n/k], & \text{ if n = multiple of k},\\ 0, & \text{else.}\end{array} \right. $ X(kω)
Differentiating in Time x[n] − x[n − 1] (1 − ejω)X(ω)
Accumulation $ \sum^{n}_{k=-\infty} x[k] $ $ \frac{1}{1-e^{-j\omega}}X(\omega) $
Symmetry x[n] real and even X(ω) real and even
x[n] real and odd X(ω) purely imaginary and odd
Other DT Fourier Transform Properties
Parseval's relation $ \frac {1}{N} \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = $

Back to Collective Table

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal