(New page: Should question 3 be Let x(t) be a continuous-time signal with <math class="inline"> \left| {\mathcal X} (\omega)\right| =0</math> for <math class="inline"> \left| \omega\right| > \omega...)
 
Line 3: Line 3:
 
Let x(t) be a continuous-time signal with <math class="inline"> \left| {\mathcal X} (\omega)\right| =0</math> for  <math class="inline"> \left| \omega\right| > \omega_s </math>. Can one recover the signal x(t) from the signal <math class="inline"> y(t)=x(t) p(t-3) </math>, where  
 
Let x(t) be a continuous-time signal with <math class="inline"> \left| {\mathcal X} (\omega)\right| =0</math> for  <math class="inline"> \left| \omega\right| > \omega_s </math>. Can one recover the signal x(t) from the signal <math class="inline"> y(t)=x(t) p(t-3) </math>, where  
  
<math class="inline"> p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} n) ?</math>
+
<math class="inline"> p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} k) ?</math>
  
  

Revision as of 04:36, 1 April 2011

Should question 3 be

Let x(t) be a continuous-time signal with $ \left| {\mathcal X} (\omega)\right| =0 $ for $ \left| \omega\right| > \omega_s $. Can one recover the signal x(t) from the signal $ y(t)=x(t) p(t-3) $, where

$ p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} k) ? $


instead of this?


Let x(t) be a continuous-time signal with $ \left| {\mathcal X} (\omega)\right| =0 $ for $ \left| \omega)\right| > \omega_m $. Can one recover the signal x(t) from the signal $ y(t)=x(t) p(t-3) $, where

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison