(New page: Category:ECE301Spring2011Boutin Category:Problem_solving ---- = Practice Question on Computing the Fourier Transform of a Discrete-time Signal = Compute the Fourier transform of ...)
 
Line 15: Line 15:
 
----
 
----
 
=== Answer 1  ===
 
=== Answer 1  ===
Write it here.
+
 
 +
<math class="inline">{\mathcal X} (\omega) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}=\sum_{n=-\infty}^\infty 3^n u[-n]e^{-j\omega n}=\sum_{n=-\infty}^0 3^n e^{-j\omega n}=\sum_{n=-\infty}^0 \Bigg(\frac{3}{e^{j\omega}}\Bigg)^n</math>  Let k=-n
 +
 
 +
<math>= \sum_{n=0}^\infty \Bigg(\frac{e^{j\omega}}{3}\Bigg)^k</math>
 +
 
 +
<math>\mathcal X (\omega) = \frac{1}{1-\frac{e^{j\omega}}{3}}</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 19:42, 28 February 2011 (UTC)
 +
 
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Write it here.
 
Write it here.

Revision as of 14:42, 28 February 2011


Practice Question on Computing the Fourier Transform of a Discrete-time Signal

Compute the Fourier transform of the signal

$ x[n] = 3^n u[-n].\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ {\mathcal X} (\omega) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}=\sum_{n=-\infty}^\infty 3^n u[-n]e^{-j\omega n}=\sum_{n=-\infty}^0 3^n e^{-j\omega n}=\sum_{n=-\infty}^0 \Bigg(\frac{3}{e^{j\omega}}\Bigg)^n $ Let k=-n

$ = \sum_{n=0}^\infty \Bigg(\frac{e^{j\omega}}{3}\Bigg)^k $

$ \mathcal X (\omega) = \frac{1}{1-\frac{e^{j\omega}}{3}} $

--Cmcmican 19:42, 28 February 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva