(New page: Category:ECE301Spring2011Boutin Category:Problem_solving ---- = Practice Question on Computing the Fourier Transform of a Continuous-time Signal = Compute the Fourier transform o...)
 
Line 15: Line 15:
 
----
 
----
 
=== Answer 1  ===
 
=== Answer 1  ===
Write it here.
+
 
 +
Guess <math>\chi(\omega)=2\pi\delta(\omega-2\pi k)\,</math> such that <math>\mathfrak{F}^{-1}=e^{jk2\pi t}</math>
 +
 
 +
check:
 +
 
 +
<math>\mathfrak{F}(2\pi\delta(\omega-2\pi k))=\frac{1}{2\pi}\int_{-\infty}^\infty2\pi\delta(\omega-2\pi k)e^{j\omega t}d\omega=e^{jk2\pi t}</math>
 +
 
 +
Therefore,<math>\chi(\omega)=2\pi\delta(\omega-2\pi k)\,</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 20:47, 21 February 2011 (UTC)
 +
 
 +
 
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Write it here.
 
Write it here.

Revision as of 15:47, 21 February 2011


Practice Question on Computing the Fourier Transform of a Continuous-time Signal

Compute the Fourier transform of the signal

$ x(t) = \cos (2 \pi t )\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Guess $ \chi(\omega)=2\pi\delta(\omega-2\pi k)\, $ such that $ \mathfrak{F}^{-1}=e^{jk2\pi t} $

check:

$ \mathfrak{F}(2\pi\delta(\omega-2\pi k))=\frac{1}{2\pi}\int_{-\infty}^\infty2\pi\delta(\omega-2\pi k)e^{j\omega t}d\omega=e^{jk2\pi t} $

Therefore,$ \chi(\omega)=2\pi\delta(\omega-2\pi k)\, $

--Cmcmican 20:47, 21 February 2011 (UTC)


Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood