Line 15: Line 15:
 
The output <math>y[n]</math> depends on past values of <math>x[n]</math>, since we have <math>x[n-1]</math> in the system equation.
 
The output <math>y[n]</math> depends on past values of <math>x[n]</math>, since we have <math>x[n-1]</math> in the system equation.
  
Hence, we deduce that system has '''memory'''.
+
Hence, we deduce that this system has '''memory'''.
  
 
<u>Causality:</u>
 
<u>Causality:</u>
Line 41: Line 41:
 
Let <math>x_1[n]</math> be an input to the system. Then <math>y_1[n]=x_1[n]x_1[n-1]</math> is its response.
 
Let <math>x_1[n]</math> be an input to the system. Then <math>y_1[n]=x_1[n]x_1[n-1]</math> is its response.
  
Now, let <math>x_2[n]=x_1[n-n_0]</math> be an input to the system, where <math>n_0</math> can be any number. Then, <math>y_2[n]=x_1[n-n_0]x_1[n-1-n_0]=y_1[n-n_0]</math>.
+
Now, let <math>x_2[n]=x_1[n-n_0]</math> be an input to the system, where <math>n_0</math> can be any integer. Then, <math>y_2[n]=x_1[n-n_0]x_1[n-1-n_0]=y_1[n-n_0]</math>.
  
 
Hence the system is '''time invariant'''.
 
Hence the system is '''time invariant'''.
Line 55: Line 55:
 
<u>Memory:</u>
 
<u>Memory:</u>
  
For <math>t=-\pi/2</math>, we have <math>y(-\pi/2)=x(-1)</math>. However, <math>-\pi/2\leq -1</math>.
+
For <math>t=-\pi/2</math>, we have <math>y(-\pi/2)=x(-1)</math>. However, <math>-\pi/2< -1</math>.
 
   
 
   
 
Then the output <math>y(t)</math> depends on future values of the input <math>x(t)</math>.
 
Then the output <math>y(t)</math> depends on future values of the input <math>x(t)</math>.
  
Hence, we deduce that system has '''memory'''.
+
Hence, we deduce that this system has '''memory'''.
  
 
<u>Causality:</u>
 
<u>Causality:</u>
Line 79: Line 79:
 
Let <math>x_2(t)</math> be an input to the given system. Then its response is <math>y_2(t)=x_2(\sin(t))</math>.
 
Let <math>x_2(t)</math> be an input to the given system. Then its response is <math>y_2(t)=x_2(\sin(t))</math>.
  
Now, let <math>x_3(t)=ax_1(t)+bx_2(t)</math> be an input to the system, where <math>a</math> and <math>b</math> can be any number. Then its response is <math>y_2(t)=ax_1(\sin(t))+bx_2(\sin(t))=ay_1(t)+by_2(t)</math>.  
+
Now, let <math>x_3(t)=ax_1(t)+bx_2(t)</math> be an input to the system, where <math>a</math> and <math>b</math> can be any numbers. Then its response is <math>y_3(t)=ax_1(\sin(t))+bx_2(\sin(t))=ay_1(t)+by_2(t)</math>.  
  
 
Hence the system is '''linear'''.
 
Hence the system is '''linear'''.
Line 88: Line 88:
  
 
Now, let <math>x_2(t)=x_1(t-t_0)</math> be an input to the system, where <math>t_0</math> can be any number. Then, <math>y_2(t)=x_1(\sin(t-t_0))=y_1(t-t_0)</math>.
 
Now, let <math>x_2(t)=x_1(t-t_0)</math> be an input to the system, where <math>t_0</math> can be any number. Then, <math>y_2(t)=x_1(\sin(t-t_0))=y_1(t-t_0)</math>.
 +
 +
Hence the system is '''time invariant'''.
 +
 +
c) <u>Invertibility</u>
 +
 +
The system equation can be written as
 +
 +
<math>y[n]=x[n-10]+x[n-9]+\dots+x[n]+x[n+1]+\dots+x[n+10]</math>.
 +
 +
Hence, the input <math>x[n]</math> can be written in terms of the output as such:
 +
 +
<math>x[n]=y[n]-x[n-10]-x[n-9]-\dots-x[n-1]-x[n+1]-x[n+2]-\dots-x[n+10]</math>.
 +
 +
Hence, the system is '''invertible''' and the inverse system has the following equation: <math>y[n]=x[n]-y[n-10]-y[n-9]-\dots-y[n-1]-y[n+1]-y[n+2]-\dots-y[n+10]</math>.
 +
 +
<u>Memory:</u>
 +
 +
The output <math>y[n]</math> depends on past and future values of <math>x[n]</math>, since we have <math>x[n-1]</math> and <math>x[n+1]</math>, for example, in the system equation.
 +
 +
Hence, we deduce that this system has '''memory'''.
 +
 +
<u>Causality:</u>
 +
 +
Since the output depends on <math>x[n+1]</math>, for example, we deduce that the system depends on future values of the input and hence the system is '''non-causal'''.
 +
 +
<u>Stability</u>
 +
 +
Let <math>x[n]</math> be a bounded signal by some number B, i.e. <math>|x[n]|<B</math>  for all <math>n</math>.
 +
 +
Then the response to <math>x[n]</math> is always bounded as such: <math>|y[n]|<21B</math> for all <math>n</math>.
 +
 +
Thus the given system is '''stable'''.
 +
 +
<u>Linearity</u>
 +
 +
Let <math>x_1[n]</math> be an input to the given system. Then its response is <math class="inline">y_1[n]=\sum_{k=n-10}^{n+10} x_1[k]</math>.
 +
Let <math>x_2[n]</math> be an input to the given system. Then its response is <math class="inline">y_2[n]=\sum_{k=n-10}^{n+10} x_2[k]</math>.
 +
 +
Now, let <math>x_3[n]=ax_1[n]+bx_2[n]</math> be an input to the system, where <math>a</math> and <math>b</math> can be any numbers. Then its response is <math class="inline">y_3[n]=\sum_{k=n-10}^{n+10}(ax_1[k] + bx_2[k])= a\sum_{k=n-10}^{n+10} x_1[k] + b\sum_{k=n-10}^{n+10} x_2[k] = ay_1[n]+by_2[n]</math>.
 +
 +
Hence the system is '''linear'''.
 +
 +
<u>Time invariance</u>
 +
 +
Let <math>x_1[n]</math> be an input to the system. Then <math class="inline">y_1[n]=\sum_{k=n-10}^{n+10} x_1[k]</math> is its response.
 +
 +
Now, let <math>x_2[n]=x_1[n-n_0]</math> be an input to the system, where <math>n_0</math> can be any integer. Then, <math>y_2[n]=\sum_{k=n-10}^{n+10} x_1[k-n_0]=\sum_{k=n-n_0-10}^{n-n_0+10} x_1[k] = y_1[n-n_0]</math>.
 +
 +
Hence the system is '''time invariant'''.
 +
 +
d) <u>Invertibility</u>
 +
 +
Let <math>x_1(t)=0</math> for all <math>t</math> be an input to the given system. Then, its response is <math>y_1(t)=0</math> for all <math>t</math>.
 +
 +
Let <math>x_2(t)=\delta (t-1)</math> be an input to the given system. Then, its response is <math>y_2(t)=t^2\delta(t)=0</math> for all <math>t</math>.
 +
 +
Since <math class="inline">x_2(t)\neq x_1(t)</math> and <math>y_2(t)=y_1(t)</math>, then the system is '''not invertible'''.
 +
 +
<u>Memory:</u>
 +
 +
The output <math>y(t)</math> depends on future values of the input <math>x(t)</math> since we have <math>x(t+1)</math> in the system equation.
 +
 +
Hence, we deduce that this system has '''memory'''.
 +
 +
<u>Causality:</u>
 +
 +
Using the same reasoning for the memory part, we can say that the system is '''non-causal'''.
 +
 +
<u>Stability</u>
 +
 +
Let <math>x(t)=1</math> for all <math>t</math> be an input to the given system.
 +
 +
Then the response to <math>x(t)</math> is not bounded since <math>y(\infty)=(\infty)^2.1=\infty</math>.
 +
 +
Thus the given system is '''not stable'''.
 +
 +
<u>Linearity</u>
 +
 +
Let <math>x_1(t)</math> be an input to the given system. Then its response is <math>y_1(t)=t^2x_1(t+1)</math>.
 +
 +
Let <math>x_2(t)</math> be an input to the given system. Then its response is <math>y_2(t)=t^2x_2(t+1)</math>.
 +
 +
Now, let <math>x_3(t)=ax_1(t)+bx_2(t)</math> be an input to the system, where <math>a</math> and <math>b</math> can be any numbers. Then its response is <math>y_3(t)=t^2(ax_1(t+1)+bx_2(t+1))=ay_1(t)+by_2(t)</math>.
 +
 +
Hence the system is '''linear'''.
 +
 +
<u>Time invariance</u>
 +
 +
Let <math>x_1(t)</math> be an input to the system. Then <math>y_1(t)=t^2x_1(t+1)</math> is its response.
 +
 +
Now, let <math>x_2(t)=x_1(t-t_0)</math> be an input to the system, where <math>t_0</math> can be any number. Then, <math class="inline">y_2(t)=t^2x_1(t+1-t_0)\neq y_1(t-t_0)</math>.
  
 
Hence the system is '''time invariant'''.
 
Hence the system is '''time invariant'''.

Revision as of 09:24, 8 February 2011

Homework 3 Solutions

Question 1

a) Invertibility

Let $ x_1[n]=0 $ for all $ n $ be an input to the given system. Then, its response is $ y_1[n]=0 $ for all $ n $.

Let $ x_2[n]=\delta [n] $ be an input to the given system. Then, its response is $ y_2[n]=0 $ for all $ n $.

Since $ x_2[n]\neq x_1[n] $ and $ y_2[n]=y_1[n] $, then the system is not invertible.

Memory:

The output $ y[n] $ depends on past values of $ x[n] $, since we have $ x[n-1] $ in the system equation.

Hence, we deduce that this system has memory.

Causality:

The output $ y[n] $ depends only on the current ( $ x[n] $ ) and past ( $ x[n-1] $ ) values of the input.

Hence, the given system is causal.

Stability

Let $ x[n] $ be a bounded signal by some number B, i.e. $ |x[n]|<B $ for all $ n $.

Then the response to $ x[n] $ is always bounded as such: $ |y[n]|<B^2 $ for all $ n $.

Thus the given system is stable.

Linearity

Let $ x_1[n] $ be an input to the given system. Then its response is $ y_1[n]=x_1[n]x_1[n-1] $.

Now, let $ x_2[n]=ax_1[n] $ be an input to the system, where $ a $ can be any number. Then its response is $ y_2[n]=a^2x_1[n]x_1[n-1]\neq ay_1[n] $, then the system is not linear.

Time invariance

Let $ x_1[n] $ be an input to the system. Then $ y_1[n]=x_1[n]x_1[n-1] $ is its response.

Now, let $ x_2[n]=x_1[n-n_0] $ be an input to the system, where $ n_0 $ can be any integer. Then, $ y_2[n]=x_1[n-n_0]x_1[n-1-n_0]=y_1[n-n_0] $.

Hence the system is time invariant.

b) Invertibility

Let $ x_1(t)=0 $ for all $ t $ be an input to the given system. Then, its response is $ y_1(t)=0 $ for all $ t $.

Let $ x_2(t)=\delta (t-2) $ be an input to the given system. Then, its response is $ y_2(t)=0 $ for all $ t $ since $ -1\leq\sin(t)\leq 1 $.

Since $ x_2(t)\neq x_1(t) $ and $ y_2(t)=y_1(t) $, then the system is not invertible.

Memory:

For $ t=-\pi/2 $, we have $ y(-\pi/2)=x(-1) $. However, $ -\pi/2< -1 $.

Then the output $ y(t) $ depends on future values of the input $ x(t) $.

Hence, we deduce that this system has memory.

Causality:

Using the same example for the memory part, we can say that the system is non-causal.

Stability

Let $ x(t) $ be a bounded signal by some number B, i.e. $ |x(t)|<B $ for all $ t $.

Then the response to $ x(t) $ is obviously always bounded as such: $ |y(t)|<B $ for all $ t $.

Thus the given system is stable.

Linearity

Let $ x_1(t) $ be an input to the given system. Then its response is $ y_1(t)=x_1(\sin(t)) $.

Let $ x_2(t) $ be an input to the given system. Then its response is $ y_2(t)=x_2(\sin(t)) $.

Now, let $ x_3(t)=ax_1(t)+bx_2(t) $ be an input to the system, where $ a $ and $ b $ can be any numbers. Then its response is $ y_3(t)=ax_1(\sin(t))+bx_2(\sin(t))=ay_1(t)+by_2(t) $.

Hence the system is linear.

Time invariance

Let $ x_1(t) $ be an input to the system. Then $ y_1(t)=x_1(\sin(t)) $ is its response.

Now, let $ x_2(t)=x_1(t-t_0) $ be an input to the system, where $ t_0 $ can be any number. Then, $ y_2(t)=x_1(\sin(t-t_0))=y_1(t-t_0) $.

Hence the system is time invariant.

c) Invertibility

The system equation can be written as

$ y[n]=x[n-10]+x[n-9]+\dots+x[n]+x[n+1]+\dots+x[n+10] $.

Hence, the input $ x[n] $ can be written in terms of the output as such:

$ x[n]=y[n]-x[n-10]-x[n-9]-\dots-x[n-1]-x[n+1]-x[n+2]-\dots-x[n+10] $.

Hence, the system is invertible and the inverse system has the following equation: $ y[n]=x[n]-y[n-10]-y[n-9]-\dots-y[n-1]-y[n+1]-y[n+2]-\dots-y[n+10] $.

Memory:

The output $ y[n] $ depends on past and future values of $ x[n] $, since we have $ x[n-1] $ and $ x[n+1] $, for example, in the system equation.

Hence, we deduce that this system has memory.

Causality:

Since the output depends on $ x[n+1] $, for example, we deduce that the system depends on future values of the input and hence the system is non-causal.

Stability

Let $ x[n] $ be a bounded signal by some number B, i.e. $ |x[n]|<B $ for all $ n $.

Then the response to $ x[n] $ is always bounded as such: $ |y[n]|<21B $ for all $ n $.

Thus the given system is stable.

Linearity

Let $ x_1[n] $ be an input to the given system. Then its response is $ y_1[n]=\sum_{k=n-10}^{n+10} x_1[k] $. Let $ x_2[n] $ be an input to the given system. Then its response is $ y_2[n]=\sum_{k=n-10}^{n+10} x_2[k] $.

Now, let $ x_3[n]=ax_1[n]+bx_2[n] $ be an input to the system, where $ a $ and $ b $ can be any numbers. Then its response is $ y_3[n]=\sum_{k=n-10}^{n+10}(ax_1[k] + bx_2[k])= a\sum_{k=n-10}^{n+10} x_1[k] + b\sum_{k=n-10}^{n+10} x_2[k] = ay_1[n]+by_2[n] $.

Hence the system is linear.

Time invariance

Let $ x_1[n] $ be an input to the system. Then $ y_1[n]=\sum_{k=n-10}^{n+10} x_1[k] $ is its response.

Now, let $ x_2[n]=x_1[n-n_0] $ be an input to the system, where $ n_0 $ can be any integer. Then, $ y_2[n]=\sum_{k=n-10}^{n+10} x_1[k-n_0]=\sum_{k=n-n_0-10}^{n-n_0+10} x_1[k] = y_1[n-n_0] $.

Hence the system is time invariant.

d) Invertibility

Let $ x_1(t)=0 $ for all $ t $ be an input to the given system. Then, its response is $ y_1(t)=0 $ for all $ t $.

Let $ x_2(t)=\delta (t-1) $ be an input to the given system. Then, its response is $ y_2(t)=t^2\delta(t)=0 $ for all $ t $.

Since $ x_2(t)\neq x_1(t) $ and $ y_2(t)=y_1(t) $, then the system is not invertible.

Memory:

The output $ y(t) $ depends on future values of the input $ x(t) $ since we have $ x(t+1) $ in the system equation.

Hence, we deduce that this system has memory.

Causality:

Using the same reasoning for the memory part, we can say that the system is non-causal.

Stability

Let $ x(t)=1 $ for all $ t $ be an input to the given system.

Then the response to $ x(t) $ is not bounded since $ y(\infty)=(\infty)^2.1=\infty $.

Thus the given system is not stable.

Linearity

Let $ x_1(t) $ be an input to the given system. Then its response is $ y_1(t)=t^2x_1(t+1) $.

Let $ x_2(t) $ be an input to the given system. Then its response is $ y_2(t)=t^2x_2(t+1) $.

Now, let $ x_3(t)=ax_1(t)+bx_2(t) $ be an input to the system, where $ a $ and $ b $ can be any numbers. Then its response is $ y_3(t)=t^2(ax_1(t+1)+bx_2(t+1))=ay_1(t)+by_2(t) $.

Hence the system is linear.

Time invariance

Let $ x_1(t) $ be an input to the system. Then $ y_1(t)=t^2x_1(t+1) $ is its response.

Now, let $ x_2(t)=x_1(t-t_0) $ be an input to the system, where $ t_0 $ can be any number. Then, $ y_2(t)=t^2x_1(t+1-t_0)\neq y_1(t-t_0) $.

Hence the system is time invariant.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang