Line 24: Line 24:
 
--[[User:Cmcmican|Cmcmican]] 19:07, 26 January 2011 (UTC)
 
--[[User:Cmcmican|Cmcmican]] 19:07, 26 January 2011 (UTC)
  
 +
:<span style="color:green">TA's comment: Correct. This system is a time-varying system. Good job!</span>
 +
--[[User:Ahmadi|Ahmadi]] 17:22, 27 January 2011 (UTC)
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.

Revision as of 12:22, 27 January 2011

Practice Question on Time Invariance of a System

The input x[n] and the output y[n] of a system are related by the equation

$ y[n]=x[n-1]+x[1-n]. $

Is the system time invariant (yes/no)? Justify your answer.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

No, this system is time variant. $ x[n] \to \Bigg[ time\ delay\ n_0 \Bigg] \to y[n]=x[n-n_0] \to \Bigg[ system \Bigg] \to z[n]=y[n-1]+y[1-n]=x[(n-1)-n_0]+x[(1-n)-n_0] $

$ x[n] \to \Bigg[ system \Bigg] \to y[n]=x[n-1]+x[1-n] \to \Bigg[ time\ delay\ n_0 \Bigg] \to z[n]=y[n-n_0]=x[(n-n_0)-1]+x[1-(n-n_0)] $

$ =x[n-1-n_0]+x[1-n+n_0]\, $

The second term in the last equation has a factor of $ +n_0 $, so the two are not equal, therefore this system is time variant.

--Cmcmican 19:07, 26 January 2011 (UTC)

TA's comment: Correct. This system is a time-varying system. Good job!

--Ahmadi 17:22, 27 January 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang