Line 1: Line 1:
 +
<br>
  
 +
= Examples<br> =
  
=Examples=
+
== 1. Unit step  ==
  
 +
When <math>x[n]=1 (n{\ge}0)</math>
 +
  <span class="texhtml">''x''[''n''] = 0(''n'' &lt; 0)</span>
 +
  
 +
<math>X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}1\cdot z^{-n}=\frac{1}{1-z^{-1}}</math>
  
Put your content here . . .
+
== 2. Power series  ==
  
 +
<math>X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}a^{n} z^{-n}=\frac{1}{1-az^{-1}}</math>
  
 +
== 3. Exponential funtion  ==
  
 +
<math>X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}e^{-an} z^{-n}=\sum_{n=0}^{\infty}[e^{-a} z^{-1}]^{n}=\frac{1}{1-e^{-a}z^{-n}}</math>
  
[[ Z transform ECE438F10|Back to Z transform ECE438F10]]
+
== 4. Sinusoidal function  ==
 +
 
 +
<math>X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}\frac{e^{jn{\omega}} -e^{-jn{\omega}}} {2j} z^{-n}</math> <math> =\frac{1}{2j} (\frac{1}{1-e^{j\omega}z^{-1}}-\frac{1}{1-e^{-j\omega}z^{-1}})</math> <math> =\frac{1}{2j} (\frac{-e^{-j\omega}z^{-1}+e^{j\omega}z^{-1}}{1-e^{-j\omega}z^{-1}-e^{j\omega}z^{-1}+z^{-2}})</math> <math> =\frac{z^{-1}sin(\omega)}{1-2z^{-1}cos(\omega)+z^{-2}}</math>
 +
 
 +
 
 +
 
 +
<br>[[Z transform ECE438F10|Back to Z transform ECE438F10]]

Latest revision as of 17:52, 16 December 2010


Examples

1. Unit step

When $ x[n]=1 (n{\ge}0) $
  x[n] = 0(n < 0)

$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}1\cdot z^{-n}=\frac{1}{1-z^{-1}} $

2. Power series

$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}a^{n} z^{-n}=\frac{1}{1-az^{-1}} $

3. Exponential funtion

$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}e^{-an} z^{-n}=\sum_{n=0}^{\infty}[e^{-a} z^{-1}]^{n}=\frac{1}{1-e^{-a}z^{-n}} $

4. Sinusoidal function

$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}\frac{e^{jn{\omega}} -e^{-jn{\omega}}} {2j} z^{-n} $ $ =\frac{1}{2j} (\frac{1}{1-e^{j\omega}z^{-1}}-\frac{1}{1-e^{-j\omega}z^{-1}}) $ $ =\frac{1}{2j} (\frac{-e^{-j\omega}z^{-1}+e^{j\omega}z^{-1}}{1-e^{-j\omega}z^{-1}-e^{j\omega}z^{-1}+z^{-2}}) $ $ =\frac{z^{-1}sin(\omega)}{1-2z^{-1}cos(\omega)+z^{-2}} $



Back to Z transform ECE438F10

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett