Line 25: Line 25:
 
</math>
 
</math>
  
 +
b. Place the center of filter (i.e. where m=0,n=0) upon the pixel of image. Multiply h[m,n] with x[m,n] of the correspondent position and sum the value. We can get
 +
 +
<math>
 +
\begin{align}
 +
y[0,0]=&0*h[-1,1]+0*h[0,1]+0*h[1,1]+ \\
 +
&0*h[-1,0]+1*h[0,0]+0*h[1,0] \\
 +
&1*h[-1,-1]+1*h[0,-1]+1*h[1,-1] \\
 +
=&1-\frac{1}{8}+\frac{1}{2}-\frac{1}{8} \\
 +
=&\frac{5}{4}
 +
\end{align}
 +
</math>
 +
 +
c.
 
----
 
----
 
Back to [[ECE438_Week14_Quiz|Lab Week 14 Quiz Pool]]
 
Back to [[ECE438_Week14_Quiz|Lab Week 14 Quiz Pool]]

Revision as of 10:31, 29 November 2010



Solution to Q3 of Week 14 Quiz Pool


a. According to the table, we have

$ \begin{align} h[m,n]=&-\frac{1}{8}\delta [m+1,n-1]+\frac{1}{2}\delta [m,n-1]-\frac{1}{8}\delta [m-1,n-1] \\ &-\frac{1}{4}\delta [m+1,n]+\delta [m,n]-\frac{1}{4}\delta [m,n-1] \\ &-\frac{1}{8}\delta [m+1,n+1]+\frac{1}{2}\delta [m,n+1]-\frac{1}{8}\delta [m-1,n+1] \end{align} $

Replace $ \delta [m,n] $ with general input signal $ x[m,n] $ we get the difference equation of the filter.

$ \begin{align} y[m,n]=&-\frac{1}{8}x[m+1,n-1]+\frac{1}{2}x[m,n-1]-\frac{1}{8}x[m-1,n-1] \\ &-\frac{1}{4}x[m+1,n]+x[m,n]-\frac{1}{4}x[m,n-1] \\ &-\frac{1}{8}x[m+1,n+1]+\frac{1}{2}x[m,n+1]-\frac{1}{8}x[m-1,n+1] \end{align} $

b. Place the center of filter (i.e. where m=0,n=0) upon the pixel of image. Multiply h[m,n] with x[m,n] of the correspondent position and sum the value. We can get

$ \begin{align} y[0,0]=&0*h[-1,1]+0*h[0,1]+0*h[1,1]+ \\ &0*h[-1,0]+1*h[0,0]+0*h[1,0] \\ &1*h[-1,-1]+1*h[0,-1]+1*h[1,-1] \\ =&1-\frac{1}{8}+\frac{1}{2}-\frac{1}{8} \\ =&\frac{5}{4} \end{align} $

c.


Back to Lab Week 14 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics