(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q3 of Week 14 Quiz Pool == ---- ---- Back to Lab Week 14 Quiz Pool Back to [[ECE438_Lab_Fall_2010|ECE ...) |
|||
Line 5: | Line 5: | ||
---- | ---- | ||
+ | a. According to the table, we have | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | h[m,n]=&-\frac{1}{8}\delta [m+1,n-1]+\frac{1}{2}\delta [m,n-1]-\frac{1}{8}\delta [m-1,n-1] \\ | ||
+ | &-\frac{1}{4}\delta [m+1,n]+\delta [m,n]-\frac{1}{4}\delta [m,n-1] \\ | ||
+ | &-\frac{1}{8}\delta [m+1,n+1]+\frac{1}{2}\delta [m,n+1]-\frac{1}{8}\delta [m-1,n+1] | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | Replace <math>\delta [m,n]</math> with general input signal <math>x[m,n]</math> we get the difference equation of the filter. | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | y[m,n]=&-\frac{1}{8}x[m+1,n-1]+\frac{1}{2}x[m,n-1]-\frac{1}{8}x[m-1,n-1] \\ | ||
+ | &-\frac{1}{4}x[m+1,n]+x[m,n]-\frac{1}{4}x[m,n-1] \\ | ||
+ | &-\frac{1}{8}x[m+1,n+1]+\frac{1}{2}x[m,n+1]-\frac{1}{8}x[m-1,n+1] | ||
+ | \end{align} | ||
+ | </math> | ||
---- | ---- |
Revision as of 10:09, 29 November 2010
Solution to Q3 of Week 14 Quiz Pool
a. According to the table, we have
$ \begin{align} h[m,n]=&-\frac{1}{8}\delta [m+1,n-1]+\frac{1}{2}\delta [m,n-1]-\frac{1}{8}\delta [m-1,n-1] \\ &-\frac{1}{4}\delta [m+1,n]+\delta [m,n]-\frac{1}{4}\delta [m,n-1] \\ &-\frac{1}{8}\delta [m+1,n+1]+\frac{1}{2}\delta [m,n+1]-\frac{1}{8}\delta [m-1,n+1] \end{align} $
Replace $ \delta [m,n] $ with general input signal $ x[m,n] $ we get the difference equation of the filter.
$ \begin{align} y[m,n]=&-\frac{1}{8}x[m+1,n-1]+\frac{1}{2}x[m,n-1]-\frac{1}{8}x[m-1,n-1] \\ &-\frac{1}{4}x[m+1,n]+x[m,n]-\frac{1}{4}x[m,n-1] \\ &-\frac{1}{8}x[m+1,n+1]+\frac{1}{2}x[m,n+1]-\frac{1}{8}x[m-1,n+1] \end{align} $
Back to Lab Week 14 Quiz Pool
Back to ECE 438 Fall 2010 Lab Wiki Page
Back to ECE 438 Fall 2010