Line 19: Line 19:
 
A is invertible or nonsingular and B is its inverse if:  
 
A is invertible or nonsingular and B is its inverse if:  
  
<br>
+
<br>  
  
<math>\[\begin{array}{l}
+
:<math>
 +
\[\begin{array}{l}
 
AB = BA = {I_n}\\
 
AB = BA = {I_n}\\
 
\\
 
\\
Line 40: Line 41:
 
0&0& \cdots &1
 
0&0& \cdots &1
 
\end{array}} \right)}^{{I_n}}
 
\end{array}} \right)}^{{I_n}}
\end{array}\]</math>
+
\end{array}\]
 
+
 
+
  
 +
</math>
 
[[Category:MA265Fall2010Walther]]
 
[[Category:MA265Fall2010Walther]]

Revision as of 14:20, 27 November 2010

The Inverse of a Matrix

In linear algebra, the study of matrices is one of the fundamental basis of this subject. One of the concepts within this study, is the notion of an invertible or nonsingular matrix.


Definition

A square matrix is said to be invertible or nonsingular, if when multiplied by another similar matrix, the result yields the identity matrix.


Let A and B be n × n matrices.


A is invertible or nonsingular and B is its inverse if:


$ \[\begin{array}{l} AB = BA = {I_n}\\ \\ \overbrace {\left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \vdots & \vdots & \ddots & \vdots \\ {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}} \end{array}} \right)}^A\overbrace {\left( {\begin{array}{*{20}{c}} {{b_{11}}}&{{b_{12}}}& \cdots &{{b_{1n}}}\\ {{b_{21}}}&{{b_{22}}}& \cdots &{{b_{2n}}}\\ \vdots & \vdots & \ddots & \vdots \\ {{b_{n1}}}&{{b_{n2}}}& \cdots &{{b_{nn}}} \end{array}} \right)}^B = \overbrace {\left( {\begin{array}{*{20}{c}} 1&0& \cdots &0\\ 0&1& \cdots &0\\ \vdots & \vdots & \ddots & \vdots \\ 0&0& \cdots &1 \end{array}} \right)}^{{I_n}} \end{array}\] $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood