(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q1 of Week 14 Quiz Pool == ---- ---- Back to Lab Week 14 Quiz Pool Back to [[ECE438_Lab_Fall_2010|ECE 4...)
 
 
Line 5: Line 5:
 
----
 
----
  
 +
Using the definition of the CSFT,<br/>
 +
<math>
 +
\begin{align}
  
 +
F(u,v) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux+vy)}dxdy \\
 +
F(u,0) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux)}dxdy \\
 +
  &= \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty}f(x,y) dy \right) e^{-j2\pi ux}dx \\
 +
  &= \int_{-\infty}^{\infty} p(x) e^{-j2\pi ux}dx \\
 +
  &= P(u) \\
 +
\end{align}
 +
</math>
 +
 +
so F(u,0) is the same as P(u) which is the CTFT of the function p(x).
 +
 +
Credit: Prof. Bouman
 
----
 
----
 
Back to [[ECE438_Week14_Quiz|Lab Week 14 Quiz Pool]]
 
Back to [[ECE438_Week14_Quiz|Lab Week 14 Quiz Pool]]

Latest revision as of 07:15, 28 November 2010



Solution to Q1 of Week 14 Quiz Pool


Using the definition of the CSFT,
$ \begin{align} F(u,v) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux+vy)}dxdy \\ F(u,0) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux)}dxdy \\ &= \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty}f(x,y) dy \right) e^{-j2\pi ux}dx \\ &= \int_{-\infty}^{\infty} p(x) e^{-j2\pi ux}dx \\ &= P(u) \\ \end{align} $

so F(u,0) is the same as P(u) which is the CTFT of the function p(x).

Credit: Prof. Bouman


Back to Lab Week 14 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva