Line 47: Line 47:
 
|-
 
|-
 
|<math>\mbox{ if } a_1,a_2, \cdots , a_n, b_1,b_2, \cdots, b_n \mbox{ are all positive and } p > 1 \mbox{ then }</math>
 
|<math>\mbox{ if } a_1,a_2, \cdots , a_n, b_1,b_2, \cdots, b_n \mbox{ are all positive and } p > 1 \mbox{ then }</math>
 +
|-
 +
|<math> \left \{ (a_1+b+1)^p + (a_2+b_2)^p+ \cdots + (a_n+b_n)^p \right \} ^{1/p} \leqq (a_1^p + a_2^p + \cdots + a_n^p)^{1/p} + (b_1^p+b_2^p+ \cdots+ b_n^p)^{1/p}</math>
 
|-
 
|-
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Cauchy-schwarz Inequality for Integrals
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Cauchy-schwarz Inequality for Integrals

Revision as of 08:18, 25 November 2010

Inequalities
Triangular Inequalities
$ \vert a_1 \vert - \vert a_2 \vert \leqq \vert a_1 +a_2 \vert \leqq \vert a_1 \vert + \vert a_2 \vert $
$ \vert a_1 + a_2 + \cdots + a_n \vert \leqq \vert a_1 \vert + \vert a_2 \vert + \cdots + \vert a_n \vert $
Cauchy-schwarz Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right ) $
$ \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n $
Inequalities Involving Arithmetic, Geometric and Harmonic
$ \mbox{ if } A, \ G \mbox{ and } H \mbox{ are arithmatic, geometric and harmonic means of a positive numbers } a_1 , a_2 ,\cdots , a_n, \mbox{ then } $
$ H \leqq G \leqq A $
$ A = \frac{a_1 + a_2 + \cdots + a_n}{n} \qquad \qquad G = \sqrt[n]{a_1a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1} + {1 \over a_2 }+ \cdots +{1 \over a_n } \right ) $
$ \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. $
Holder Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert \leqq \left ( \vert a_1 \vert ^p + \vert a_2 \vert ^p + \cdots + \vert a_n \vert ^p \right ) ^{1/p} \left ( \vert b_1 \vert ^q + \vert b_2 \vert ^q + \cdots + \vert b_n \vert ^q \right ) ^{1/q} $
$ {1 \over p} + {1 \over q} = 1 \qquad \qquad p > 1. q > 1 $
$ \mbox{ The equality occures only if } \vert a_1 \vert ^{p-1} / \vert b_1 \vert = \vert a_2 \vert ^{p-1} / \vert b_2 \vert = \cdots =\vert a_n \vert ^{p-1} / \vert n_1 \vert . $
$ \mbox{ for } p = q = 2, \mbox{ the formula reduces to Cauchy-Shwartz Inequality}. $
Tchebytchev Inequality
$ \mbox{ if } a_1 \geqq a_2 \geqq \cdots \geqq a_n \mbox{ and } b_1 \geqq b_2 \geqq \cdots \geqq b_n \mbox{ then } $
$ \left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 + b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n} $
$ (a_1 + a_2 + \cdots +a_n)(b_1 + b_2 + \cdots +b_n) \leqq n(a_1b_1 + a_2b_2 + \cdots +a_nb_n) $
Minkowski Inequality
$ \mbox{ if } a_1,a_2, \cdots , a_n, b_1,b_2, \cdots, b_n \mbox{ are all positive and } p > 1 \mbox{ then } $
$ \left \{ (a_1+b+1)^p + (a_2+b_2)^p+ \cdots + (a_n+b_n)^p \right \} ^{1/p} \leqq (a_1^p + a_2^p + \cdots + a_n^p)^{1/p} + (b_1^p+b_2^p+ \cdots+ b_n^p)^{1/p} $
Cauchy-schwarz Inequality for Integrals
Holder Inequality for Integrals
Minkowski Inequality for Integrals

Back to Collective Table

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang