Line 21: | Line 21: | ||
|- | |- | ||
|<math> H \leqq G \leqq A</math> | |<math> H \leqq G \leqq A</math> | ||
+ | |- | ||
+ | |<math> A = \frac{a_1+a_2+\cdots + a_n}{n} \qquad \qquad G = \sqrt [n]{a_a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1}+{1 \over a_2}+ \cdots +{1 \over a_n}\ right ) </math> | ||
+ | |- | ||
+ | |<math> \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. </math> | ||
|- | |- | ||
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Holder Inequality | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Holder Inequality |
Revision as of 07:23, 25 November 2010
Inequalities | |
---|---|
Triangular Inequalities | |
$ \vert a_1 \vert - \vert a_2 \vert \leqq \vert a_1 +a_2 \vert \leqq \vert a_1 \vert + \vert a_2 \vert $ | |
$ \vert a_1 + a_2 + \cdots + a_n \vert \leqq \vert a_1 \vert + \vert a_2 \vert + \cdots + \vert a_n \vert $ | |
Cauchy-schwarz Inequality | |
$ \vert a_1b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right ) $ | |
$ \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n $ | |
Inequalities Involving Arithmetic, Geometric and Harmonic | |
$ \mbox{ if } A, \ G \mbox{ and } H \mbox{ are arithmatic, geometric and harmonic means of a positive numbers } a_1 , a_2 ,\cdots , a_n, \mbox{ then } $ | |
$ H \leqq G \leqq A $ | |
$ A = \frac{a_1+a_2+\cdots + a_n}{n} \qquad \qquad G = \sqrt [n]{a_a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1}+{1 \over a_2}+ \cdots +{1 \over a_n}\ right ) $ | |
$ \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. $ | |
Holder Inequality | |
Tchebytchev Inequality | |
Minkowski Inequality | |
Cauchy-schwarz Inequality for Integrals | |
Holder Inequality for Integrals | |
Minkowski Inequality for Integrals |