(New page: ---- Back to ECE600 Back to ECE 600 QE) |
|||
Line 1: | Line 1: | ||
+ | ==7.13 QE 2007 August== | ||
+ | '''1. (25 Points)''' | ||
+ | |||
+ | Let <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> be two independent identically distributed random variables taking on values in <math>\mathbf{N}</math> (the natural numbers) with <math>P\left(\left\{ \mathbf{X}=i\right\} \right)=P\left(\left\{ \mathbf{Y}=i\right\} \right)=\frac{1}{2^{i}}\;,\qquad i=1,2,3,\cdots.</math> | ||
+ | |||
+ | '''(a)''' | ||
+ | |||
+ | Find <math>P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right)</math> , for <math>k\in\mathbf{N}</math> . | ||
+ | |||
+ | '''Note''' | ||
+ | |||
+ | This problem is different from <math>P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)>k\right\} \right)</math> . | ||
+ | |||
+ | <math>P\left(\left\{ \mathbf{Y}>k\right\} \right)=1-P\left(\left\{ \mathbf{Y}\leq k\right\} \right)=1-\sum_{i=1}^{k}\frac{1}{2^{i}}=1-\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k}\right)}{1-\frac{1}{2}}=1-\left(1-\left(\frac{1}{2}\right)^{k}\right)=\left(\frac{1}{2}\right)^{k}.</math> | ||
+ | |||
+ | <math>P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right)=P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}>k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)</math><math>=2\cdot P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right)</math><math>=2\cdot\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}+\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}=3\cdot\left(\frac{1}{2}\right)^{2k}=\frac{3}{4^{k}}.</math> | ||
+ | |||
+ | '''(b)''' | ||
+ | |||
+ | Find <math>P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right)</math> . | ||
+ | |||
+ | <math>P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right)</math><math>=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}.</math> | ||
+ | |||
+ | '''(c)''' | ||
+ | |||
+ | Find <math>P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right)</math> . | ||
+ | |||
+ | <math>P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \cap\left\{ \mathbf{X}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \right)\cdot P\left(\left\{ \mathbf{X}=k\right\} \right)</math><math>=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}.</math> | ||
+ | |||
+ | '''(d)''' | ||
+ | |||
+ | Find <math>P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right)</math> for a given natural number <math>k</math> . | ||
+ | |||
+ | <math>P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \cap\left\{ \mathbf{X}=ki\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \right)\cdot P\left(\left\{ \mathbf{X}=ki\right\} \right)</math><math>=\sum_{i=1}^{\infty}\frac{1}{2^{i}}\cdot\frac{1}{2^{ki}}=\sum_{i=1}^{\infty}\left(\frac{1}{2^{k+1}}\right)^{i}=\frac{\frac{1}{2^{k+1}}}{1-\frac{1}{2^{k+1}}}=\frac{1}{2^{k+1}-1}.</math> | ||
+ | |||
+ | '''2. (25 Points)''' | ||
+ | |||
+ | Let <math>\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math> be a sequence of binomially distributed random variables, with the <math>n</math> -th random variable <math>\mathbf{X}_{n}</math> having pmf <math>p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} | ||
+ | n\\ | ||
+ | k | ||
+ | \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right).</math> | ||
+ | |||
+ | Show that, if the <math>p_{n}</math> have the property that <math>np_{n}\rightarrow\lambda</math> as <math>n\rightarrow\infty</math> , where <math>\lambda</math> is a positive constant, then the sequence <math>\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math> converges in distribution to a Poisson random variable <math>\mathbf{X}</math> with mean <math>\lambda</math> . | ||
+ | |||
+ | '''Hint:''' | ||
+ | |||
+ | You may find the following fact useful: | ||
+ | |||
+ | <math>\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math> | ||
+ | |||
+ | '''Answer''' | ||
+ | |||
+ | Please see the example [CS1SequenceOfBinomiallyDistributedRV] that is identical to this problem. | ||
+ | |||
+ | '''3. (25 Points)''' | ||
+ | |||
+ | Let <math>\mathbf{X}\left(t\right)</math> be a real Gaussian random process with mean function <math>\mu\left(t\right)</math> and autocovariance function <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . | ||
+ | |||
+ | '''(a)''' | ||
+ | |||
+ | Write the expression for the <math>n</math> -th order characteristic function of <math>\mathbf{X}\left(t\right)</math> in terms of <math>\mu\left(t\right)</math> and <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . | ||
+ | |||
+ | ref. | ||
+ | |||
+ | There are the note about the n-th order characteristic function of Gaussians random process [CS1n-thOrderCharacteristicFunctionOfGaussian]. The only difference between the note and this problem is that this problem use the <math>\mu\left(t\right)</math> rather than <math>\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math> . | ||
+ | |||
+ | '''Solution''' | ||
+ | |||
+ | <math>\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\}</math> . | ||
+ | |||
+ | '''(b)''' | ||
+ | |||
+ | Show that the probabilistic description of <math>\mathbf{X}\left(t\right)</math> is completely characterized by <math>\mu\left(t\right)</math> and autocovariance function <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . | ||
+ | |||
+ | '''Solution''' | ||
+ | |||
+ | From (a), the characteristic function of <math>\mathbf{X}\left(t\right)</math> is specified completely in terms of <math>\mu_{\mathbf{X}}\left(t\right)</math> and <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . Thus, probabilistic description of <math>\mathbf{X}\left(t\right)</math> is completely characterized by the characteristic function. | ||
+ | |||
+ | '''Note''' | ||
+ | |||
+ | <math>f_{\mathbf{X}}\left(x\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega x}\Phi_{\mathbf{X}}\left(\omega\right)d\omega.</math> | ||
+ | |||
+ | '''(c)''' | ||
+ | |||
+ | Show that if <math>\mathbf{X}\left(t\right)</math> is wide-sense stationary then it is also strict-sense stationary. | ||
+ | |||
+ | '''Note''' | ||
+ | |||
+ | You can use the theorem and its proof [CS1WSSandGaussianisSSS] for solving this problem. | ||
+ | |||
+ | '''4. (25 Points)''' | ||
+ | |||
+ | Let <math>\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots</math> be a sequence of independent, identically distributed random variables, each having Cauchy pdf <math>f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}.</math> Find the pdf of <math>\mathbf{Y}_{n}</math> . Describe how the pdf of <math>\mathbf{Y}_{n}</math> depends on <math>n</math> . Does the sequence <math>\mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots</math> converge in distribution? If yes, what is the distribution of the random variable it converges to? | ||
+ | |||
+ | '''Note''' | ||
+ | |||
+ | You can see the definition of the converge in distribution [CS1ConvergeInDistribution]. Furthermore, you have to know the characteristic function of Cauchy distributed random varaible. | ||
+ | |||
+ | '''Solution''' | ||
+ | |||
+ | According to the characteristic function of Cauchy distributed random variable, | ||
+ | |||
+ | <math>\Phi_{\mathbf{X}}\left(\omega\right)=e^{-\left|\omega\right|}.</math> | ||
+ | |||
+ | <math>\Phi_{\mathbf{Y}_{n}}\left(\omega\right)=E\left[\exp\left\{ i\omega\mathbf{Y}_{n}\right\} \right]=E\left[\exp\left\{ i\frac{\omega}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\right\} \right]=E\left[\prod_{k=1}^{n}\exp\left\{ i\frac{\omega}{n}\mathbf{X}_{k}\right\} \right]</math><math>=E\left[\exp\left\{ i\frac{\omega}{n}\mathbf{X}\right\} \right]^{n}=\Phi_{\mathbf{X}}\left(\frac{\omega}{n}\right)^{n}=\left[e^{-\left|\omega/n\right|}\right]^{n}=e^{-\left|\omega\right|}.</math> | ||
+ | |||
+ | <math>f_{\mathbf{Y}_{n}}\left(\omega\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega y}e^{-\left|\omega\right|}d\omega=\frac{1}{2\pi}\left[\int_{-\infty}^{0}e^{-i\omega y}e^{\omega}d\omega+\int_{0}^{\infty}e^{-i\omega y}e^{-\omega}d\omega\right]</math><math>=\frac{1}{2\pi}\left[\int_{-\infty}^{C}e^{\omega\left(1-iy\right)}+\int_{C}^{\infty}e^{-\omega\left(1+iy\right)}d\omega\right]=\frac{1}{2\pi}\left[\frac{1}{1-iy}e^{\omega\left(1-iy\right)}\biggl|_{-\infty}^{C}+\frac{-1}{1+iy}e^{-\omega\left(1+iy\right)}\biggl|_{C}^{\infty}\right]</math><math>=\frac{1}{2\pi}\left[\frac{1}{1-iy}+\frac{1}{1+iy}\right]=\frac{1}{2\pi}\left[\frac{1+iy+1-iy}{1+y^{2}}\right]=\frac{1}{2\pi}\cdot\frac{2}{1+y^{2}}=\frac{1}{\pi\left(1+y^{2}\right)}.</math> | ||
---- | ---- |
Revision as of 10:39, 23 November 2010
7.13 QE 2007 August
1. (25 Points)
Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two independent identically distributed random variables taking on values in $ \mathbf{N} $ (the natural numbers) with $ P\left(\left\{ \mathbf{X}=i\right\} \right)=P\left(\left\{ \mathbf{Y}=i\right\} \right)=\frac{1}{2^{i}}\;,\qquad i=1,2,3,\cdots. $
(a)
Find $ P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right) $ , for $ k\in\mathbf{N} $ .
Note
This problem is different from $ P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)>k\right\} \right) $ .
$ P\left(\left\{ \mathbf{Y}>k\right\} \right)=1-P\left(\left\{ \mathbf{Y}\leq k\right\} \right)=1-\sum_{i=1}^{k}\frac{1}{2^{i}}=1-\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k}\right)}{1-\frac{1}{2}}=1-\left(1-\left(\frac{1}{2}\right)^{k}\right)=\left(\frac{1}{2}\right)^{k}. $
$ P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right)=P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}>k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right) $$ =2\cdot P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right) $$ =2\cdot\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}+\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}=3\cdot\left(\frac{1}{2}\right)^{2k}=\frac{3}{4^{k}}. $
(b)
Find $ P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right) $ .
$ P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right) $$ =\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}. $
(c)
Find $ P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right) $ .
$ P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \cap\left\{ \mathbf{X}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \right)\cdot P\left(\left\{ \mathbf{X}=k\right\} \right) $$ =\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}. $
(d)
Find $ P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right) $ for a given natural number $ k $ .
$ P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \cap\left\{ \mathbf{X}=ki\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \right)\cdot P\left(\left\{ \mathbf{X}=ki\right\} \right) $$ =\sum_{i=1}^{\infty}\frac{1}{2^{i}}\cdot\frac{1}{2^{ki}}=\sum_{i=1}^{\infty}\left(\frac{1}{2^{k+1}}\right)^{i}=\frac{\frac{1}{2^{k+1}}}{1-\frac{1}{2^{k+1}}}=\frac{1}{2^{k+1}-1}. $
2. (25 Points)
Let $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ be a sequence of binomially distributed random variables, with the $ n $ -th random variable $ \mathbf{X}_{n} $ having pmf $ p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right). $
Show that, if the $ p_{n} $ have the property that $ np_{n}\rightarrow\lambda $ as $ n\rightarrow\infty $ , where $ \lambda $ is a positive constant, then the sequence $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ converges in distribution to a Poisson random variable $ \mathbf{X} $ with mean $ \lambda $ .
Hint:
You may find the following fact useful:
$ \lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}. $
Answer
Please see the example [CS1SequenceOfBinomiallyDistributedRV] that is identical to this problem.
3. (25 Points)
Let $ \mathbf{X}\left(t\right) $ be a real Gaussian random process with mean function $ \mu\left(t\right) $ and autocovariance function $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .
(a)
Write the expression for the $ n $ -th order characteristic function of $ \mathbf{X}\left(t\right) $ in terms of $ \mu\left(t\right) $ and $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .
ref.
There are the note about the n-th order characteristic function of Gaussians random process [CS1n-thOrderCharacteristicFunctionOfGaussian]. The only difference between the note and this problem is that this problem use the $ \mu\left(t\right) $ rather than $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ .
Solution
$ \Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} $ .
(b)
Show that the probabilistic description of $ \mathbf{X}\left(t\right) $ is completely characterized by $ \mu\left(t\right) $ and autocovariance function $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .
Solution
From (a), the characteristic function of $ \mathbf{X}\left(t\right) $ is specified completely in terms of $ \mu_{\mathbf{X}}\left(t\right) $ and $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ . Thus, probabilistic description of $ \mathbf{X}\left(t\right) $ is completely characterized by the characteristic function.
Note
$ f_{\mathbf{X}}\left(x\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega x}\Phi_{\mathbf{X}}\left(\omega\right)d\omega. $
(c)
Show that if $ \mathbf{X}\left(t\right) $ is wide-sense stationary then it is also strict-sense stationary.
Note
You can use the theorem and its proof [CS1WSSandGaussianisSSS] for solving this problem.
4. (25 Points)
Let $ \mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots $ be a sequence of independent, identically distributed random variables, each having Cauchy pdf $ f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}. $ Find the pdf of $ \mathbf{Y}_{n} $ . Describe how the pdf of $ \mathbf{Y}_{n} $ depends on $ n $ . Does the sequence $ \mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots $ converge in distribution? If yes, what is the distribution of the random variable it converges to?
Note
You can see the definition of the converge in distribution [CS1ConvergeInDistribution]. Furthermore, you have to know the characteristic function of Cauchy distributed random varaible.
Solution
According to the characteristic function of Cauchy distributed random variable,
$ \Phi_{\mathbf{X}}\left(\omega\right)=e^{-\left|\omega\right|}. $
$ \Phi_{\mathbf{Y}_{n}}\left(\omega\right)=E\left[\exp\left\{ i\omega\mathbf{Y}_{n}\right\} \right]=E\left[\exp\left\{ i\frac{\omega}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\right\} \right]=E\left[\prod_{k=1}^{n}\exp\left\{ i\frac{\omega}{n}\mathbf{X}_{k}\right\} \right] $$ =E\left[\exp\left\{ i\frac{\omega}{n}\mathbf{X}\right\} \right]^{n}=\Phi_{\mathbf{X}}\left(\frac{\omega}{n}\right)^{n}=\left[e^{-\left|\omega/n\right|}\right]^{n}=e^{-\left|\omega\right|}. $
$ f_{\mathbf{Y}_{n}}\left(\omega\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega y}e^{-\left|\omega\right|}d\omega=\frac{1}{2\pi}\left[\int_{-\infty}^{0}e^{-i\omega y}e^{\omega}d\omega+\int_{0}^{\infty}e^{-i\omega y}e^{-\omega}d\omega\right] $$ =\frac{1}{2\pi}\left[\int_{-\infty}^{C}e^{\omega\left(1-iy\right)}+\int_{C}^{\infty}e^{-\omega\left(1+iy\right)}d\omega\right]=\frac{1}{2\pi}\left[\frac{1}{1-iy}e^{\omega\left(1-iy\right)}\biggl|_{-\infty}^{C}+\frac{-1}{1+iy}e^{-\omega\left(1+iy\right)}\biggl|_{C}^{\infty}\right] $$ =\frac{1}{2\pi}\left[\frac{1}{1-iy}+\frac{1}{1+iy}\right]=\frac{1}{2\pi}\left[\frac{1+iy+1-iy}{1+y^{2}}\right]=\frac{1}{2\pi}\cdot\frac{2}{1+y^{2}}=\frac{1}{\pi\left(1+y^{2}\right)}. $