Line 19: | Line 19: | ||
|<math> \int u^n d u = \frac{u^{n+1}}{n+1} \qquad n \neq -1 </math> | |<math> \int u^n d u = \frac{u^{n+1}}{n+1} \qquad n \neq -1 </math> | ||
|- | |- | ||
− | |<math> \int \frac{d u}{u} = \ln u \ ( if \ u > 0 ) \ or \ln {-u} \ ( if \ u < 0 ) = \ln \left | u \right | </math> | + | |<math> \int \frac{d u}{u} = \ln u \ ( if \ u > 0 ) \ or \ln {-u} \ ( if \ u < 0 ) = \ln \left | u \right | </math> |
|- | |- | ||
|<math> \int e^u d u = e^u </math> | |<math> \int e^u d u = e^u </math> | ||
Line 25: | Line 25: | ||
|<math> \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ and \ a \neq 1</math> | |<math> \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ and \ a \neq 1</math> | ||
|- | |- | ||
− | |<math> \int \sin u d u = - \cos u </math> | + | |<math> \int \sin u \ d u = - \cos u </math> |
+ | |- | ||
+ | |<math> \int \cos u \ d u = \sin u </math> | ||
+ | |- | ||
+ | |<math> \int \tan u \ d u = - \ln {\cos u} </math> | ||
+ | |- | ||
+ | |<math> \int \cot u \ d u = \ln {\sin u} </math> | ||
+ | |- | ||
+ | |<math> \int \frac{d u}{\cos u} = \ln {\frac{1}{\cos u} + \tan u} = \ln{\tan {\frac{u}{2}+\frac{\pi}{2}}} </math> | ||
|- | |- | ||
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Important Transformations | ! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Important Transformations |
Revision as of 07:07, 19 November 2010
Table of Infinite Integrals | |
---|---|
General Rules | |
$ \int a d x = a x $ | |
$ \int a f ( x ) d x = a \int f ( x ) d x $ | |
$ \int ( u \pm v \pm w \pm \cdot \cdot \cdot ) d x = \int u d x \pm \int v d x \pm \int w d x \pm \cdot \cdot \cdot $ | |
$ \int u d v = u v - \int v d u $ | |
$ \int f ( a x ) d x = \frac{1}{a} \int f ( u ) d u $ | |
$ \int F { f ( x ) } d x = \int F ( u ) \frac{dx}{du} d u = \int \frac{F ( u )}{f^' ( x )} d u \qquad u = f ( x ) $ | |
$ \int u^n d u = \frac{u^{n+1}}{n+1} \qquad n \neq -1 $ | |
$ \int \frac{d u}{u} = \ln u \ ( if \ u > 0 ) \ or \ln {-u} \ ( if \ u < 0 ) = \ln \left | u \right | $ | |
$ \int e^u d u = e^u $ | |
$ \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ and \ a \neq 1 $ | |
$ \int \sin u \ d u = - \cos u $ | |
$ \int \cos u \ d u = \sin u $ | |
$ \int \tan u \ d u = - \ln {\cos u} $ | |
$ \int \cot u \ d u = \ln {\sin u} $ | |
$ \int \frac{d u}{\cos u} = \ln {\frac{1}{\cos u} + \tan u} = \ln{\tan {\frac{u}{2}+\frac{\pi}{2}}} $ | |
Important Transformations | |
$ \int F( a x + b) d x =\frac{1}{a} \int F( u) d x \qquad u = a x + b $ |