Line 4: Line 4:
 
• = Bayes' rule
 
• = Bayes' rule
  
• <math>P\left(A|B\right)=\frac{P\left(A\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A\right)P\left(A\right)}{P\left(B\right)}</math>  
+
• <math class="inline">P\left(A|B\right)=\frac{P\left(A\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A\right)P\left(A\right)}{P\left(B\right)}</math>  
  
• If <math>P\left(B\right)=\sum_{i}P\left(B\cap A_{i}\right)=\sum_{i}P\left(B|A_{i}\right)P\left(A_{i}\right)</math> , then <math>P\left(A_{i}|B\right)=\frac{P\left(A_{i}\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A_{i}\right)A_{i}}{\sum_{j}P\left(B|A_{j}\right)A_{j}}</math>  
+
• If <math class="inline">P\left(B\right)=\sum_{i}P\left(B\cap A_{i}\right)=\sum_{i}P\left(B|A_{i}\right)P\left(A_{i}\right)</math> , then <math class="inline">P\left(A_{i}|B\right)=\frac{P\left(A_{i}\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A_{i}\right)A_{i}}{\sum_{j}P\left(B|A_{j}\right)A_{j}}</math>  
  
 
----
 
----

Latest revision as of 10:23, 30 November 2010

1.3 Bayes' theorem

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


• = Bayes' rule

$ P\left(A|B\right)=\frac{P\left(A\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A\right)P\left(A\right)}{P\left(B\right)} $

• If $ P\left(B\right)=\sum_{i}P\left(B\cap A_{i}\right)=\sum_{i}P\left(B|A_{i}\right)P\left(A_{i}\right) $ , then $ P\left(A_{i}|B\right)=\frac{P\left(A_{i}\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A_{i}\right)A_{i}}{\sum_{j}P\left(B|A_{j}\right)A_{j}} $


Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison