Line 4: Line 4:
 
Inner product space
 
Inner product space
  
Any Euclidean space <math>\mathbf{R}^{n}</math>  with dot product is an inner product space.
+
Any Euclidean space <math class="inline">\mathbf{R}^{n}</math>  with dot product is an inner product space.
  
 
<math>\left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i}</math>
 
<math>\left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i}</math>

Latest revision as of 10:34, 30 November 2010

1.13 etc.

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


Inner product space

Any Euclidean space $ \mathbf{R}^{n} $ with dot product is an inner product space.

$ \left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i} $


Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal