(New page: ='''1.13 etc.'''= Inner product space Any Euclidean space <math>\mathbf{R}^{n}</math> with dot product is an inner product space. <math>\left\langle \left(x_{1},\cdots,x_{n}\right),\le...) |
|||
Line 6: | Line 6: | ||
<math>\left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i}</math> | <math>\left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i}</math> | ||
+ | |||
+ | ---- | ||
+ | [[ECE600|Back to ECE600]] | ||
+ | |||
+ | [[ECE 600 Prerequisites|Back to ECE 600 Prerequisites]] |
Revision as of 06:09, 17 November 2010
1.13 etc.
Inner product space
Any Euclidean space $ \mathbf{R}^{n} $ with dot product is an inner product space.
$ \left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i} $