Line 5: Line 5:
 
*Under construction --[[User:zhao148|Zhao]]
 
*Under construction --[[User:zhao148|Zhao]]
 
----
 
----
Q1. Consider the discrete-time signal
+
Q1. Show that the DTFT of time-reversal, <math>x[-n]</math>, is <math>X(-w)</math>
 +
 
 +
* [[ECE438_Week13_Quiz_Q1sol|Solution]].
 +
----
 +
Q2. Consider the discrete-time signal
  
 
<math>x[n]=2\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2].</math>
 
<math>x[n]=2\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2].</math>
Line 28: Line 32:
  
 
* Same as HW8 Q3 available [[ECE438_HW8_Solution|here]].
 
* Same as HW8 Q3 available [[ECE438_HW8_Solution|here]].
----
 
Q2.
 
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].
 
 
----
 
----
 
Q3.  
 
Q3.  

Revision as of 10:09, 17 November 2010


Quiz Questions Pool for Week 13

  • Under construction --Zhao

Q1. Show that the DTFT of time-reversal, $ x[-n] $, is $ X(-w) $


Q2. Consider the discrete-time signal

$ x[n]=2\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2]. $

a) Determine the DTFT $ X(\omega) $ of x[n] and the DTFT of $ Y(\omega) $ of y[n]=x[-n].

b) Using your result from part a), compute

$ x[n]* y[n] $.

c) Consider the discrete-time signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. $.

Obtain the 4-point circular convolution of x[n] and z[n].

d) When computing the N-point circular convolution of x[n] and the signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. $.

how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?

  • Same as HW8 Q3 available here.

Q3.


Q4.


Q5.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett