(New page: =='''1.2 Probability Space'''== ='''1.2.1 Probability Space'''= • Probability Space = <math>\left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\}</math> • <m...)
 
Line 31: Line 31:
 
– <math>A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right)</math> .
 
– <math>A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right)</math> .
  
1.2.3 Axioms of probability
+
='''1.2.3 Axioms of probability'''=
  
• The probability measure P\left(\cdot\right)  corresponding to S  and F\left(S\right)  is the assignment of a real number P\left(A\right)  to each A\in F\left(S\right)  satisfying following properties. Axioms of probability:
+
• The probability measure <math>P\left(\cdot\right)</math> corresponding to <math>S</math> and <math>F\left(S\right)</math> is the assignment of a real number <math>P\left(A\right)</math> to each <math>A\in F\left(S\right)</math> satisfying following properties. Axioms of probability:
  
1. P\left(A\right)\geq0 , \forall A\in F\left(S\right) .
+
1. <math>P\left(A\right)\geq0</math> , <math>\forall A\in F\left(S\right)</math> .
  
2. P\left(S\right)=1 .
+
2. <math>P\left(S\right)=1</math> .
  
3. If A_{1}  and A_{2}  are disjoint events, then P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) . If A_{1},A_{2}\in F\left(S\right)  and A_{1}\cap A_{2}=\varnothing , then A_{1}  and A_{2}  are disjoint events.
+
3. If <math>A_{1}</math> and <math>A_{2}</math> are disjoint events, then <math>P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)</math> . If <math>A_{1},A_{2}\in F\left(S\right)</math> and <math>A_{1}\cap A_{2}=\varnothing</math> , then <math>A_{1}</math> and <math>A_{2}</math> are disjoint events.
  
4. If A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right)  is a countable collection of disjointed events, then P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right) .
+
4. If <math>A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right)</math> is a countable collection of disjointed events, then <math>P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)</math> .
  
• P\left(\cdot\right)  is a set function. P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R} .
+
<math>P\left(\cdot\right)</math> is a set function. <math>P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R}</math> .
  
• If you want to talk about the probability of a single output \omega_{0}\in S , you do so by considering the single event  
+
• If you want to talk about the probability of a single output <math>\omega_{0}\in S</math> , you do so by considering the single event  
  
 
*[[ECE 600 Prerequisites|ECE 600 Prerequisites]]
 
*[[ECE 600 Prerequisites|ECE 600 Prerequisites]]

Revision as of 12:04, 16 November 2010

1.2 Probability Space

1.2.1 Probability Space

• Probability Space = $ \left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\} $

$ \mathcal{S}\sim $ sample space

$ \mathcal{F}\left(\mathcal{S}\right)\sim $ event space , collection of subsets of $ \mathcal{S} $ (including sample space itself)

$ \mathcal{P}\sim $ maps $ \mathcal{F}\left(\mathcal{S}\right)\rightarrow\left[0,1\right] $

1.2.2 Event space

• Event space $ F\left(S\right) $ or $ F $ is a non-empty collection of subset of $ S $ satisfying the following three closure properties:

1. If $ A\in F\left(S\right) $ , then $ \bar{A}\in F\left(S\right) $ .

2. If for some finite $ n $ , $ A_{1},A_{2},\cdots,A_{n}\in F\left(S\right) $ , then $ \bigcup_{i=1}^{n}A_{i}\in F\left(S\right) $ .

3. If $ A_{i}\in F\left(S\right) $ , $ i=1,2,\cdots $ , then $ \bigcup_{i=1}^{\infty}A_{i}\in F\left(S\right) $ .

• A set $ F\left(S\right) $ with these 3 properties is called a sigma-field ($ \sigma $-field). If only 1 and 2 are satisfied, we have a field.

• It follows from three properties that $ \varnothing,S\in F\left(S\right) $ .

– Suppose $ A\in F\left(S\right) $ , then $ \bar{A}\in F\left(S\right) $ , $ A\cup\bar{A}=S\in F\left(S\right) $ , and $ \bar{S}=\varnothing\in F\left(S\right) $ .

• What about intersection? Suppose $ A,B\in F\left(S\right) $ . Is $ A\cap B\in F\left(S\right) $ ?

$ A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right) $ .

1.2.3 Axioms of probability

• The probability measure $ P\left(\cdot\right) $ corresponding to $ S $ and $ F\left(S\right) $ is the assignment of a real number $ P\left(A\right) $ to each $ A\in F\left(S\right) $ satisfying following properties. Axioms of probability:

1. $ P\left(A\right)\geq0 $ , $ \forall A\in F\left(S\right) $ .

2. $ P\left(S\right)=1 $ .

3. If $ A_{1} $ and $ A_{2} $ are disjoint events, then $ P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) $ . If $ A_{1},A_{2}\in F\left(S\right) $ and $ A_{1}\cap A_{2}=\varnothing $ , then $ A_{1} $ and $ A_{2} $ are disjoint events.

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right) $ is a countable collection of disjointed events, then $ P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right) $ .

$ P\left(\cdot\right) $ is a set function. $ P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R} $ .

• If you want to talk about the probability of a single output $ \omega_{0}\in S $ , you do so by considering the single event

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin