Line 1: Line 1:
== Chebyshev inequality ==
+
[[Category:random_variables]]
 +
[[Category:ECE600]]
 +
[[Category:Sangchun_Han]]
 +
 
 +
= Two Proofs of Chebyshev inequality=
 +
by [[user:han84|Sangchun Han]], PhD student in [[ECE]]
 +
----
 +
== Question: Prove Chebyshev's inequality: ==
  
 
Let <math>\mathbf{X}</math> be a random variable with mean <math>\mu</math>  and variance <math>\sigma^{2}</math>. Then <math>\forall\epsilon>0</math>  
 
Let <math>\mathbf{X}</math> be a random variable with mean <math>\mu</math>  and variance <math>\sigma^{2}</math>. Then <math>\forall\epsilon>0</math>  
Line 6: Line 13:
 
p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
</math>
 
</math>
 
+
----
 +
==Answers==
 
=== Proof 1 ===
 
=== Proof 1 ===
 
[[Image:ECE600_Note_Chebyshev_inequality1.jpg‎]]
 
[[Image:ECE600_Note_Chebyshev_inequality1.jpg‎]]
Line 39: Line 47:
 
\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
</math>
 
</math>
 
+
----
 +
==Discussion==
 +
----
 
=== Proof 2 ===
 
=== Proof 2 ===
  
Line 57: Line 67:
 
\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
</math>
 
</math>
 +
----
 +
==Discussion==
 +
----
 +
[[ECE600|Back to ECE600]]
 +
 +
[[2010_Fall_ECE_600_Comer|Back to ECE 600, Fall 2010, Prof. Comer]]

Latest revision as of 10:26, 16 November 2010


Two Proofs of Chebyshev inequality

by Sangchun Han, PhD student in ECE


Question: Prove Chebyshev's inequality:

Let $ \mathbf{X} $ be a random variable with mean $ \mu $ and variance $ \sigma^{2} $. Then $ \forall\epsilon>0 $

$ p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}. $

Answers

Proof 1

ECE600 Note Chebyshev inequality1.jpg

Let $ g_{1}\left(\mathbf{X}\right)=\mathbf{1}_{\left\{ r\in\mathbf{R}:\left|\mathbf{X}-\mu\right|\geq\epsilon\right\} }\left(\mathbf{X}\right) $ and $ g_{2}\left(\mathbf{X}\right)=\frac{\left(\mathbf{X}-\mu\right)^{2}}{\epsilon^{2}}. $

Let $ \phi\left(\mathbf{X}\right)=g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\Longrightarrow\phi\left(\mathbf{X}\right)\geq0,\;\forall\mathbf{X}\in\mathbf{R}. $

$ E\left[\phi\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)\right]-E\left[g_{1}\left(\mathbf{X}\right)\right]=\frac{\sigma^{2}}{\epsilon^{2}}-p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right) $ and $ E\left[\phi\left(\mathbf{X}\right)\right]\geq0. $

$ \because E\left[g_{2}\left(\mathbf{X}\right)\right]=E\left[\frac{\left(\mathbf{X}-\mu\right)^{2}}{\epsilon^{2}}\right]=\frac{1}{\epsilon^{2}}E\left[\left(\mathbf{X}-\mu\right)^{2}\right]=\frac{\sigma^{2}}{\epsilon^{2}}. $

$ \therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}. $


Discussion


Proof 2

$ E\left[\mathbf{X}\right]=\int_{0}^{\epsilon}xf_{\mathbf{X}}\left(x\right)dx+\int_{\epsilon}^{\infty}xf_{\mathbf{X}}\left(x\right)dx\geq\int_{\epsilon}^{\infty}xf_{\mathbf{X}}\left(x\right)dx\geq\int_{\epsilon}^{\infty}\epsilon f_{\mathbf{X}}\left(x\right)dx=\epsilon P\left(\left\{ \mathbf{X}\geq\epsilon\right\} \right). $

$ P\left(\left\{ \mathbf{X}\geq\epsilon\right\} \right)\leq\frac{E\left[\mathbf{X}\right]}{\epsilon}. $

$ P\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)=P\left(\left\{ \left(\mathbf{X}-\mu\right)^{2}\geq\epsilon^{2}\right\} \right)\leq\frac{E\left[\left(\mathbf{X}-\mu\right)^{2}\right]}{\epsilon^{2}}=\frac{\sigma^{2}}{\epsilon^{2}}. $

$ \therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}. $


Discussion


Back to ECE600

Back to ECE 600, Fall 2010, Prof. Comer

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics