Line 3: Line 3:
 
! style="background-color: rgb(228, 188, 126); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Table of Definite Integrals
 
! style="background-color: rgb(228, 188, 126); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Table of Definite Integrals
 
|-
 
|-
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | General Rules
+
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Definition of Definite Integral
 
|-
 
|-
 
|<math> \int\limits_{a}^{b} f ( x ) d x = \lim_{n \to \infty} { f ( a ) \Delta x + f ( a + \Delta x ) \Delta x + f ( a + 2 \Delta x ) + \cdot \cdot \cdot + f ( a + ( n - 1 ) \Delta x ) \Delta x }</math>
 
|<math> \int\limits_{a}^{b} f ( x ) d x = \lim_{n \to \infty} { f ( a ) \Delta x + f ( a + \Delta x ) \Delta x + f ( a + 2 \Delta x ) + \cdot \cdot \cdot + f ( a + ( n - 1 ) \Delta x ) \Delta x }</math>
Line 13: Line 13:
 
|<math> \int\limits_{-\infty}^{\infty} f ( x ) d x = \lim_{a \to - \infty \ b \to \infty} \int\limits_{a}^{b} f ( x ) d x</math>
 
|<math> \int\limits_{-\infty}^{\infty} f ( x ) d x = \lim_{a \to - \infty \ b \to \infty} \int\limits_{a}^{b} f ( x ) d x</math>
 
|-
 
|-
|<math> \int\limits_{a}{b}
+
|<math> \int\limits_{a}^{b} f ( x ) d x = \lim_{\epsilon \to \infty} \int\limits_{a}^{b - \epsilon} f ( x ) d x</math>
 +
|-
 +
|<math> \int\limits_{a}^{b} f ( x ) d x = \lim_{\epsilon \to \infty} \int\limits_{a + \epsilon}^{b} f ( x ) d x</math>

Revision as of 06:18, 15 November 2010

Table of Definite Integrals
Definition of Definite Integral
$ \int\limits_{a}^{b} f ( x ) d x = \lim_{n \to \infty} { f ( a ) \Delta x + f ( a + \Delta x ) \Delta x + f ( a + 2 \Delta x ) + \cdot \cdot \cdot + f ( a + ( n - 1 ) \Delta x ) \Delta x } $
$ \int\limits_{a}^{b} f ( x ) d x = \int\limits_{a}^{b} \frac{d}{dx} g ( x ) d x = g ( x ) |_{a}^{b} = g ( b ) - g ( a ) $
$ \int\limits_{a}^{\infty} d x = \lim_{n \to \infty} \int\limits_{a}^{b} f ( x ) d x $
$ \int\limits_{-\infty}^{\infty} f ( x ) d x = \lim_{a \to - \infty \ b \to \infty} \int\limits_{a}^{b} f ( x ) d x $
$ \int\limits_{a}^{b} f ( x ) d x = \lim_{\epsilon \to \infty} \int\limits_{a}^{b - \epsilon} f ( x ) d x $
$ \int\limits_{a}^{b} f ( x ) d x = \lim_{\epsilon \to \infty} \int\limits_{a + \epsilon}^{b} f ( x ) d x $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn