Line 3: Line 3:
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Basic Signals and Functions in one variable
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Basic Signals and Functions in one variable
 
|-
 
|-
! colspan="2" style="background: #eee;" | Continuous-time signals
+
! colspan="2" style="background: #eee;" | Continuous-time signals.
 
|-
 
|-
| align="right" style="padding-right: 1em;" | sinc function || <math>sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ for }t\in {\mathbb R}</math>
+
| align="right" style="padding-right: 1em;" | sinc function || <math>sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ where }t\in {\mathbb R}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | rect function || <math>rect (t) = \left\{ \begin{array}{ll}1, & |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R}</math>  
+
| align="right" style="padding-right: 1em;" | rect function || <math>rect (t) = \left\{ \begin{array}{ll}1, & \text{ for } |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R}</math>  
 
|-
 
|-
| align="right" style="padding-right: 1em;" | CT unit step function || <math> u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R}</math>
+
| align="right" style="padding-right: 1em;" | CT unit step function || <math> u(t)=\left\{ \begin{array}{ll}1, & \text{ for } t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R}</math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Discrete-time signals  
 
! colspan="2" style="background: #eee;" | Discrete-time signals  
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} </math>
+
| align="right" style="padding-right: 1em;" | DT delta function || <math>\delta[n]=\left\{ \begin{array}{ll}1, & \text{ for } n=1  \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} </math>
|-
+
|-  
| align="right" style="padding-right: 1em;" | CT unit impulse (Dirac Delta) ||  
+
| align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & \text{ for } n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} </math>
 
|-  
 
|-  
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Basic Signals and Functions in two variables
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Basic Signals and Functions in two variables
Line 23: Line 23:
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
([[2D_delta|info]]) 2D sinc dirac delta  
 
([[2D_delta|info]]) 2D sinc dirac delta  
| <math>\delta(x,y)=\delta(x) \delta(y)</math>
+
| <math>\delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R}</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
([[2D_sinc|info]]) 2D sinc function  
 
([[2D_sinc|info]]) 2D sinc function  
| <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}</math>
+
| <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}, \text{ where }x,y\in {\mathbb R}</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
([[2D_rect|info]]) 2D rect function  
 
([[2D_rect|info]]) 2D rect function  
| <math>rect(x,y)= \left\{ \begin{array}{ll}1, & |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }x,y\in {\mathbb R}</math>
+
| <math>rect(x,y)= \left\{ \begin{array}{ll}1, & \text{ for } |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }x,y\in {\mathbb R}</math>
 
|}
 
|}
  

Revision as of 12:43, 12 November 2010

Basic Signals and Functions in one variable
Continuous-time signals.
sinc function $ sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ where }t\in {\mathbb R} $
rect function $ rect (t) = \left\{ \begin{array}{ll}1, & \text{ for } |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $
CT unit step function $ u(t)=\left\{ \begin{array}{ll}1, & \text{ for } t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $
Discrete-time signals
DT delta function $ \delta[n]=\left\{ \begin{array}{ll}1, & \text{ for } n=1 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $
DT unit step function $ u[n]=\left\{ \begin{array}{ll}1, & \text{ for } n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $
Basic Signals and Functions in two variables
Continuous-time

(info) 2D sinc dirac delta

$ \delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R} $

(info) 2D sinc function

$ sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}, \text{ where }x,y\in {\mathbb R} $

(info) 2D rect function

$ rect(x,y)= \left\{ \begin{array}{ll}1, & \text{ for } |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }x,y\in {\mathbb R} $

Back to Collective Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn