Line 13: Line 13:
 
</math>
 
</math>
  
<math>=\sqrt{\frac{2}{\pi}}\frac{1}{w}\left(
+
<math>=\sqrt{\frac{2}{\pi}}\ \frac{1}{w}\left(
 
-(\sin(w)-0)+(\sin(2w)-\sin(w))
 
-(\sin(w)-0)+(\sin(2w)-\sin(w))
 
\right)=</math>
 
\right)=</math>
  
<math>=\sqrt{\frac{2}{\pi}}\frac{\sin(2w)-2\sin(w)}{w}.</math>
+
<math>=\sqrt{\frac{2}{\pi}}\ \frac{\sin(2w)-2\sin(w)}{w}.</math>
 +
 
 +
517: 2.
 +
 
 +
<math>\hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left(
 +
\int_0^k w\cos(wx)\,dx\right)=
 +
</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k
 +
\right)
 +
</math>
 +
 
 +
 
  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  

Revision as of 08:01, 11 November 2010

Homework 12 Solutions

517: 1.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^1(-1)\cos(wx)\,dx+ \int_1^2(1)\cos(wx)\,dx \right)= $

$ =\sqrt{\frac{2}{\pi}}\left([-\frac{1}{w}\sin(wx)]_0^1 +[\frac{1}{w}\sin(wx)]_1^2\right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{1}{w}\left( -(\sin(w)-0)+(\sin(2w)-\sin(w)) \right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{\sin(2w)-2\sin(w)}{w}. $

517: 2.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^k w\cos(wx)\,dx\right)= $

$ =\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k \right) $


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett