Line 4: Line 4:
 
a. Linearity
 
a. Linearity
  
Given <math>v[n]=ax[n]+by[n]</math>
+
Given <math>v[n]=ax[n]+by[n]</math> ,then
 
+
Then
+
  
 
<math>
 
<math>
Line 19: Line 17:
 
b. Modulation
 
b. Modulation
  
Given <math>v[n]=x[n]e^{j\omega_0n}</math>
+
Given <math>v[n]=x[n]e^{j\omega_0n}</math> ,then
 +
 
 +
<math>
 +
\begin{align}
 +
V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\
 +
&= \sum_k (x[k]e^{j\omega_0 k})w[n-k]e^{-j\omega k} \\
 +
&= \sum_k x[k]w[n-k]e^{-j(\omega -\omega_0)k} \\
 +
&= X(\omega -\omega_0 ,n)
 +
\end{align}
 +
</math>
  
 
----
 
----

Latest revision as of 12:09, 10 November 2010

Solution of Week12 Quiz Question 4


a. Linearity

Given $ v[n]=ax[n]+by[n] $ ,then

$ \begin{align} V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\ &= \sum_k (ax[k]+by[k])w[n-k]e^{-j\omega k} \\ &= \sum_k ax[k]w[n-k]e^{-j\omega k}+\sum_k by[k]w[n-k]e^{-j\omega k} \\ &= aX(\omega ,n)+bY(\omega ,n) \end{align} $

b. Modulation

Given $ v[n]=x[n]e^{j\omega_0n} $ ,then

$ \begin{align} V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\ &= \sum_k (x[k]e^{j\omega_0 k})w[n-k]e^{-j\omega k} \\ &= \sum_k x[k]w[n-k]e^{-j(\omega -\omega_0)k} \\ &= X(\omega -\omega_0 ,n) \end{align} $


Back to Quiz Pool

Back to Lab wiki

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach