m
Line 59: Line 59:
 
* [[Media:Qpw12ece438fa10.pdf|Solution]].
 
* [[Media:Qpw12ece438fa10.pdf|Solution]].
 
----
 
----
Q4.  
+
Q4. Consider the STDTFT defined as
 +
 
 +
<math>X(\omega ,n)=\sum_k x[k]w[n-k]e^{-j\omega k}</math>
 +
 
 +
where x[n] is the speech signal and w[n] is the window sequence. Prove the following properties:
 +
 
 +
a. Linearity – if <math>v[n]=ax[n]+by[n]</math> ,then <math>V(\omega ,n)=aX(\omega ,n)+bY(\omega, n)</math>.
 +
 
 +
b. Modulation – if <math>v[n]=x[n]e^{j\omega_0n}</math> ,then <math>V(\omega ,n)=X(\omega -\omega_0,n)</math>.  
  
 
* [[ECE438_Week12_Quiz_Q4sol|Solution]].
 
* [[ECE438_Week12_Quiz_Q4sol|Solution]].
 
----
 
----
Q5.  
+
Q5. Suppose we have two 4-pt sequences x[n] and h[n] described as follows:
 +
 
 +
<math>
 +
\begin{align}
 +
x[n] &= cos(\frac{\pi n}{2})\text{ ,n=0,1,2,3} \\
 +
h[n] &= 2^n\text{ ,n=0,1,2,3}
 +
\end{align}
 +
</math>
  
 
* [[ECE438_Week12_Quiz_Q5sol|Solution]].
 
* [[ECE438_Week12_Quiz_Q5sol|Solution]].

Revision as of 11:50, 10 November 2010


Quiz Questions Pool for Week 12


Q1. Consider a causal FIR filter of length M = 2 with impulse response

$ h[n]=\delta[n-1]+\delta[n-2]\,\! $

a) Provide a closed-form expression for the 9-pt DFT of $ h[n] $, denoted $ H_9[k] $, as a function of $ k $. Simplify as much as possible.

b) Consider the sequence $ x[n] $ of length 9 below,

$ x[n]=\text{cos}\left(\frac{2\pi}{3}n\right)(u[n]-u[n-9])\,\! $

$ y_9[n] $ is formed by computing $ X_9[k] $ as an 9-pt DFT of $ x[n] $, $ H_9[k] $ as an 9-pt DFT of $ h[n] $, and then $ y_9[n] $ as the 9-pt inverse DFT of $ Y_9[k] = X_9[k]H_9[k] $.

Express the result $ y_9[n] $ as a weighted sum of finite-length sinewaves similar to how $ x[n] $ is written above.


Q2. Consider the discrete-time signal

$ x[n]=6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5]. $

a) Obtain the 6-point DFT X[k] of x[n].

b) Obtain the signal y[n] whose DFT is $ W_6^{-2k} X[k] $.

c) Compute six-point circular convolution between x[n] and the signal

$ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $

Q3. Consider the signal

$ x[n] = \begin{cases} cos(\pi n / 8), & n < 0 \\ cos(\pi n / 3), & \mbox{else} \end{cases} $

and assume a rectangular window

$ w[n] = \begin{cases} 1, & |n| < 25 \\ 0, & \mbox{else} \end{cases} $

The STDFT is defined as

$ \begin{align} X(\omega,n) &= \sum_{k} x[k]w[n-k]e^{-j\omega k} \end{align} $

Compute the STDTFT for the following cases:
i. n < -25
ii. n > 25
iii. n = 0


Q4. Consider the STDTFT defined as

$ X(\omega ,n)=\sum_k x[k]w[n-k]e^{-j\omega k} $

where x[n] is the speech signal and w[n] is the window sequence. Prove the following properties:

a. Linearity – if $ v[n]=ax[n]+by[n] $ ,then $ V(\omega ,n)=aX(\omega ,n)+bY(\omega, n) $.

b. Modulation – if $ v[n]=x[n]e^{j\omega_0n} $ ,then $ V(\omega ,n)=X(\omega -\omega_0,n) $.


Q5. Suppose we have two 4-pt sequences x[n] and h[n] described as follows:

$ \begin{align} x[n] &= cos(\frac{\pi n}{2})\text{ ,n=0,1,2,3} \\ h[n] &= 2^n\text{ ,n=0,1,2,3} \end{align} $


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett