(New page: == Discrete Fourier Transform (DFT) == ---- == Definition of DFT == '''DFT''' <math>X[k] = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, for \mbox{ }k = 0, 1, 2, 3, ..., N-1</math>...) |
|||
Line 14: | Line 14: | ||
---- | ---- | ||
+ | |||
+ | == Properties of DFT == | ||
+ | |||
+ | '''Linearity''' | ||
+ | |||
+ | <math>ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] </math> | ||
+ | |||
+ | for any a, b complex constant and all <math>x_1[n]</math> and <math>x_2[n]</math> with the same length |
Revision as of 14:03, 28 October 2010
Discrete Fourier Transform (DFT)
Definition of DFT
DFT
$ X[k] = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, for \mbox{ }k = 0, 1, 2, 3, ..., N-1 $
IDFT
$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, for \mbox{ }n = 0, 1, 2, 3, ..., N-1 $
Properties of DFT
Linearity
$ ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] $
for any a, b complex constant and all $ x_1[n] $ and $ x_2[n] $ with the same length