(New page: == Discrete Fourier Transform (DFT) == ---- == Definition of DFT == '''DFT''' <math>X[k] = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, for \mbox{ }k = 0, 1, 2, 3, ..., N-1</math>...)
 
Line 14: Line 14:
  
 
----
 
----
 +
 +
== Properties of DFT ==
 +
 +
'''Linearity'''
 +
 +
<math>ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] </math>
 +
 +
for any a, b complex constant and all <math>x_1[n]</math> and <math>x_2[n]</math> with the same length

Revision as of 14:03, 28 October 2010

Discrete Fourier Transform (DFT)


Definition of DFT

DFT

$ X[k] = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, for \mbox{ }k = 0, 1, 2, 3, ..., N-1 $

IDFT

$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, for \mbox{ }n = 0, 1, 2, 3, ..., N-1 $


Properties of DFT

Linearity

$ ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] $

for any a, b complex constant and all $ x_1[n] $ and $ x_2[n] $ with the same length

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett