Line 45: Line 45:
 
| align="right" style="padding-right: 1em;" | write name here
 
| align="right" style="padding-right: 1em;" | write name here
 
| place formula here
 
| place formula here
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Half-Angle Formulas
 +
|-
 +
| align="right" style="padding-right: 1em;" |Half-angle for sine
 +
|<math>  \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1-\cos  \theta}{2} } \ </math>
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Angle sum and differences identities
 +
|-
 +
| align="right" style="padding-right: 1em;" |Angle sum for sine
 +
|<math>  \sin \left( \theta\pm \alpha \right)=\sin \theta \cos \alpha \pm \cos \theta \sin \alpha</math> 
 
|}
 
|}
  

Revision as of 07:19, 22 October 2010

Trigonometric Identities
Basic Definitions
Definition of tangent $ \tan \theta = \frac{\sin \theta}{\cos\theta} $ credit
Definition of cotangent $ \cot \theta = \frac{\cos \theta}{\sin\theta} \ $ credit
Definition of secant $ \sec \theta = \frac{1}{\cos \theta} \ $
Definition of cosecant $ \csc \theta = \frac{1}{\sin \theta} \ $
Definition of versed sine (versine) $ \text{ver } \theta = 1- \cos \theta \ $
Definition of versed cosine (versine) $ \text{vercosine } \theta = 1+ \cos \theta \ $
please continue place formula here
Pythagorean identity and other related identities
Pythagorean identity $ \cos^2 \theta+\sin^2 \theta =1 \ $
$ \sin^2 \theta = 1-\cos^2 \theta \ $
$ \cos^2 \theta = 1-\sin^2 \theta \ $
$ \sec^2 \theta = 1+\tan^2 \theta \ $
$ \csc^2 \theta = 1+\cot^2 \theta \ $
write name here place formula here
Half-Angle Formulas
Half-angle for sine $ \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1-\cos \theta}{2} } \ $
Angle sum and differences identities
Angle sum for sine $ \sin \left( \theta\pm \alpha \right)=\sin \theta \cos \alpha \pm \cos \theta \sin \alpha $

Back to Collective Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn