Line 45: | Line 45: | ||
| align="right" style="padding-right: 1em;" | write name here | | align="right" style="padding-right: 1em;" | write name here | ||
| place formula here | | place formula here | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Half-Angle Formulas | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" |Half-angle for sine | ||
+ | |<math> \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1-\cos \theta}{2} } \ </math> | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Angle sum and differences identities | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" |Angle sum for sine | ||
+ | |<math> \sin \left( \theta\pm \alpha \right)=\sin \theta \cos \alpha \pm \cos \theta \sin \alpha</math> | ||
|} | |} | ||
Revision as of 07:19, 22 October 2010
Trigonometric Identities | |
---|---|
Basic Definitions | |
Definition of tangent | $ \tan \theta = \frac{\sin \theta}{\cos\theta} $ credit |
Definition of cotangent | $ \cot \theta = \frac{\cos \theta}{\sin\theta} \ $ credit |
Definition of secant | $ \sec \theta = \frac{1}{\cos \theta} \ $ |
Definition of cosecant | $ \csc \theta = \frac{1}{\sin \theta} \ $ |
Definition of versed sine (versine) | $ \text{ver } \theta = 1- \cos \theta \ $ |
Definition of versed cosine (versine) | $ \text{vercosine } \theta = 1+ \cos \theta \ $ |
please continue | place formula here |
Pythagorean identity and other related identities | |
Pythagorean identity | $ \cos^2 \theta+\sin^2 \theta =1 \ $ |
$ \sin^2 \theta = 1-\cos^2 \theta \ $ | |
$ \cos^2 \theta = 1-\sin^2 \theta \ $ | |
$ \sec^2 \theta = 1+\tan^2 \theta \ $ | |
$ \csc^2 \theta = 1+\cot^2 \theta \ $ | |
write name here | place formula here |
Half-Angle Formulas | |
Half-angle for sine | $ \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1-\cos \theta}{2} } \ $ |
Angle sum and differences identities | |
Angle sum for sine | $ \sin \left( \theta\pm \alpha \right)=\sin \theta \cos \alpha \pm \cos \theta \sin \alpha $ |