Line 1: Line 1:
 
{|
 
{|
 
|-
 
|-
! colspan="2" style="background: #e4bc7e; font-size: 110%;" | Various Formulas
+
! colspan="2" style="background: #e4bc7e; font-size: 110%;" | Basic Identities
 
|-
 
|-
| align="right" style="padding-right: 1em;" | place note here
+
| align="right" style="padding-right: 1em;" |Definition of tangent
|<math>  \tan \theta = \frac{\sin \theta}{\cos\theta} </math> > [[User:Kumar51formulas|credit]]
+
|<math>  \tan \theta = \frac{\sin \theta}{\cos\theta} </math> [[User:Kumar51formulas|credit]]
 +
|-
 +
| align="right" style="padding-right: 1em;" | Definition of cotangent
 +
| <math> \cot \theta = \frac{\cos \theta}{\sin\theta} </math>  [[User:Kumar51formulas|credit]]
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | place note here  
 
| align="right" style="padding-right: 1em;" | place note here  

Revision as of 06:50, 22 October 2010

Basic Identities
Definition of tangent $ \tan \theta = \frac{\sin \theta}{\cos\theta} $ credit
Definition of cotangent $ \cot \theta = \frac{\cos \theta}{\sin\theta} $ credit
place note here place formula here
place note here place formula here

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett