Line 6: Line 6:
 
<math>X(z) = \log \left( 1+z \right), \quad |z|<1 </math>.  
 
<math>X(z) = \log \left( 1+z \right), \quad |z|<1 </math>.  
  
Hist: expand the function into a power series using either the Taylor series formula or a [[PowerSeriesFormulas|table of power series formulas]].
+
Hint: expand the function into a power series using either the Taylor series formula or a [[PowerSeriesFormulas|table of power series formulas]].
 
----
 
----
 
Post Your answer/questions below.
 
Post Your answer/questions below.
*Answer/question
+
 
 +
The power series expansion of the given function is:
 +
 
 +
<math>\begin{align}
 +
X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\
 +
&= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n}
 +
\end{align}</math>
 +
 
 +
Substitute n = -k
 +
 
 +
<math>\begin{align}
 +
X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\
 +
&= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\
 +
&= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\
 +
&= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}
 +
\end{align}</math>
 +
 
 +
<math>\begin{align}
 +
x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\
 +
&= \frac{(-1)^{n}}{n} u[-n-1]
 +
\end{align}</math>
 +
 
 +
since it doesn't matter if the (-1) is in the num or denom.
 +
----
 
*Answer/question
 
*Answer/question
 
*Answer/question
 
*Answer/question

Revision as of 09:09, 29 November 2010

Practice Question 3, ECE438 Fall 2010, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) = \log \left( 1+z \right), \quad |z|<1 $.

Hint: expand the function into a power series using either the Taylor series formula or a table of power series formulas.


Post Your answer/questions below.

The power series expansion of the given function is:

$ \begin{align} X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\ &= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n} \end{align} $

Substitute n = -k

$ \begin{align} X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\ &= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $

$ \begin{align} x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\ &= \frac{(-1)^{n}}{n} u[-n-1] \end{align} $

since it doesn't matter if the (-1) is in the num or denom.


  • Answer/question
  • Answer/question
  • Answer/question

Previous practice problem

Next practice problem

Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn