Line 63: | Line 63: | ||
As you can see, the inverse laplace cannot be taken of the second term.... Hope this helps you. | As you can see, the inverse laplace cannot be taken of the second term.... Hope this helps you. | ||
+ | |||
+ | Page 240, Problem 16. I don't understand what to do with the e^-s term. Any guidance on this problem? | ||
[[2010 MA 527 Bell|Back to the MA 527 start page]] | [[2010 MA 527 Bell|Back to the MA 527 start page]] |
Revision as of 15:11, 10 October 2010
Homework 7 collaboration area
Question: What exactly is 6.2, #9 asking when it says to use another method to find the laplace transform for Prob 1? (AM, 07-Oct)
Answer: I think they just want you to show that it can be computed in two ways. In problem 1, you probably used the identity
L[f'] = s F(s) - f(0).
To compute the same Laplace transform a second way, you could integrate directly from the definition of the Laplace transform, or maybe you could use
L[f"] = s^2 F(s) - s f(0) - f'(0)
to get the same answer as problem 1.
Sec6.2 P232 #31: I've factored out the s in the denominator so it looks like
$ \frac{1}{s}\ \frac{5}{s^2-5} $
But I'm not sure how to proceed from there.
Answer: You will need to use the integration formula on p. 239:
$ \mathcal{L}[\ \int_0^t f(\tau)d\tau \ ]=\frac{1}{s}F(s), $
using F(s) = 5/(s^2 - 5). Find f(t) and integrate as shown to find the inverse transform of the given function.
Sec6.3 P240 #8: I have it written out as
f(t)=[u(t-0)-u(t-pi)]*(1-e^(-t)).
I'm stuck on how to work out (1-e^(-t)). In the previous problem, #5, it was easy to make t^2 into
[(t-1)+1]^2 or [(t-2)+2]^2
and essentially not change the function. However, that's not the case with (1-e^(-t)) and I don't know what to do with it.
Answer: Do the same thing:
$ 1-e^{-t}=1-e^{-[(t-\pi)+\pi]}=1-e^{-\pi}e^{-(t-\pi)} $
Question: Pg. 232 - #9: The back of the book states that (cos a)^2 = 1/2 + 1/2 cos 2a.....where does this come from?
Answer: (cosx)^2=1-(sinx)^2, (sinx)^2=1/2-1/2cos(2x) => (cosx)^2=1-[1/2-1/2cos(2x)]=1/2+1/2cos(2x)
Question: pg247 #7: Does anyone think that there might be a typo in the back of the book? in the "u(t-4)" term, I don't see how they have 1/3sin(3t-12), I think it should be 2/3. The 1/3e^-t*sin3t makes sense because you have a (1-2/3)e^-t*sin33t, but there are no other sine terms to combine with in the "u(t-4" area. This problem was heavy on the book keeping and I might have dropped something, but I can't find it.
Answer: I actually made the same mistake my first go around. The problem I encountered was after solving for the partial fractions of the "u(t-4)" term, I had:
$ \frac{-1}{s}\ + \frac{s+2}{(s+1)^2+9}\ $
This should expand to:
$ \frac{-1}{s}\ + \frac{s+1}{(s+1)^2+9}\ + \frac{1}{(s+1)^2+9}\ $
This will give you the answer the book has. Our error came from violating the s-shifting rules and incorrectly solving for the inverse Laplace using the following:
$ \frac{-1}{s}\ + \frac{s}{(s+1)^2+9}\ + \frac{2}{(s+1)^2+9}\ $
As you can see, the inverse laplace cannot be taken of the second term.... Hope this helps you.
Page 240, Problem 16. I don't understand what to do with the e^-s term. Any guidance on this problem?