Line 43: Line 43:
  
 
----
 
----
Credit: Prof. Charles Bouman
 
 
 
Back to [[ECE438_Week8_Quiz|Lab Week 8 Quiz Pool]]
 
Back to [[ECE438_Week8_Quiz|Lab Week 8 Quiz Pool]]
  

Latest revision as of 10:20, 13 October 2010



Solution to Q2 of Week 8 Quiz Pool



First, find the impulse response of $ h_1[n] $. (we assumed that $ h_1[n]=0 $ when $ n<0 $)

$ \begin{align} & h_1[n] = 0.25 h_1[n-1] + \delta[n] \\ & h_1[0]=1 \\ & h_1[1]=0.25h_1[0]=0.25 \\ & h_1[2]=0.25h_1[1]=\left(0.25\right)^2 \\ & \ldots \\ & h_1[n] = \left(0.25\right)^n u[n] \\ \end{align}\,\! $


In order to satisfy $ x[n]=h_2[n]\ast h_1[n]\ast x[n] $ for any discrete-time signal $ x[n] $,

$ h_2[n] $ must satisfy $ h_2[n]\ast h_1[n] = \delta[n] $.


Therefore, their Z-transform must satisfy $ H_1(z) H_2(z) = 1 $.

Since $ H_1(z)=\frac{1}{1-0.25z^{-1}} $, it follows that

$ H_2(z)=\frac{1}{H_1(z)}=1-0.25z^{-1} $

By its casual assumption, $ h_2[n]=\delta[n]-0.25\delta[n-1]\,\! $.


Then, the difference equation of the LTI system with the impulse reponss of $ h_2[n] $ is,

$ y[n]=x[n]-0.25x[n-1]\,\! $



Back to Lab Week 8 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett