Line 87: Line 87:
  
 
<math>\mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}]</math>
 
<math>\mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}]</math>
 +
 +
(Fred) Just a general question; for forward Laplace transforms, is everyone simply converting it to a familiar form and using the tables, or are you evaluating the integral?
  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  

Revision as of 12:33, 8 October 2010

Homework 6 collaboration area

p. 226: 1.

$ \mathcal{L}[t^2-2t]= \mathcal{L}[t^2]-2\mathcal{L}[t] $

$ = \frac{2}{s^3}-2\frac{1}{s^2} $

Odd solutions in the back of the book.

p. 226: #2:

$ \mathcal(t^2 - 3)^2 $

$ = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 $

So

$ \mathcal{L}[(t^2-3)^2] = \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]= $


$ = \frac{4!}{s^5} - 6\frac{2!}{s^3} + \frac{9}{s} $


p. 226: #4:

$ \ sin^2 4 t = \frac {1 - cos2(4t)}{2} $

So the Laplace Transform can be gotten from the table.

p. 226: #23.

$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s). $

So

$ \mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt. $

Make the change of variables

$ \tau=ct $

to get

$ \mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\ (1/c) d\tau= $

$ \frac{1}{c}F(s/c). $

Even solutions (added by Adam M on Oct 5, please check results):

p. 226: 10.

$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $

p. 226: 12.

$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $

p. 226: 30.

$ \mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $

(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get

$ \mathcal{L}^{-1}=-e^{-4t}+3e^{4t} $

AJ, I was able to get your answer and verified that it is correct. However, I am unable to see why my initial answer was wrong. I seperated as follows:

$ \mathcal{L}^{-1}[2*\frac{s}{s^2-4^2}+4*\frac{4}{s^2-4^2}] $

then used (8) and (9) from Table 6.1. Thoughts?

They are actually the exact same thing, so both answers should be correct. This can be proven using:

cosh(bx) = (1/2)*(e^(bx) + e^(-bx))

sinh(bx) = (1/2)*(e^(bx) - e^(-bx))

--Idougla 23:40, 7 October 2010 (UTC)

Thank you!

P. 226: 39. Can somebody post a solution for 39? I must be missing something on this one.

Re-write as:

$ \mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}] $

(Fred) Just a general question; for forward Laplace transforms, is everyone simply converting it to a familiar form and using the tables, or are you evaluating the integral?

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood