Line 11: Line 11:
 
Consider the signal  
 
Consider the signal  
  
<span class="texhtml">''x''[''n''] = sin(ω<sub>1</sub>''n'') + ''k''sin(ω<sub>2</sub>''n''),</span>  
+
<math>x[n]=\cos \left( \omega_1 n \right)+ k \cos \left( \omega_2 n \right) </math>
  
where k is a real valued constant.  
+
where k is a real-valued constant.  
  
 
a) Write a program that will  
 
a) Write a program that will  
Line 25: Line 25:
 
b) Run your program and generate outputs for the cases shown below.  
 
b) Run your program and generate outputs for the cases shown below.  
  
{| width="200" border="1" cellpadding="1" cellspacing="1"
+
{| width="200" border="1" cellpadding="5" cellspacing="1"
 
|-
 
|-
 
! scope="col" | Case  
 
! scope="col" | Case  
Line 35: Line 35:
 
| 1
 
| 1
 
| 20
 
| 20
|  
+
| 0.62831853
 
|  
 
|  
 
|  
 
|  
Line 41: Line 41:
 
| 2
 
| 2
 
| 200
 
| 200
|  
+
| 0.62831853
|  
+
| 0
|  
+
| N/A
 
|-
 
|-
 
| 3
 
| 3
 
| 20
 
| 20
|  
+
| 0.64402649
|  
+
| 0
|  
+
| N/A
 
|-
 
|-
 
| 4
 
| 4
 
| 200
 
| 200
|  
+
| 0.64402649
|  
+
| 0
|  
+
| N/A
 
|-
 
|-
 
| 5
 
| 5
 
| 200
 
| 200
|  
+
| 0.64402649
|  
+
| 0.2
|  
+
| 1.27234502
 
|-
 
|-
 
| 6
 
| 6
 
| 200
 
| 200
|  
+
| 0.64402649
|  
+
| 0.2
|  
+
| 0.79168135
 
|}
 
|}
  

Revision as of 08:20, 8 October 2010

Homework 6, ECE438, Fall 2010, Prof. Boutin

Due in class, Friday October 15, 2010.

The discussion page for this homework is here. Feel free to share your answers/thoughts/questions on that page.


Question 1

Consider the signal

$ x[n]=\cos \left( \omega_1 n \right)+ k \cos \left( \omega_2 n \right) $

where k is a real-valued constant.

a) Write a program that will

  1. Plot x[n].
  2. Compute the N point DFT X[k]. (Yes, you may use FFT routines.)
  3. Plot the magnitude of X[k].

Turn in a print out of your code.

b) Run your program and generate outputs for the cases shown below.

Case N $ \omega_1 $ k $ \omega_2 $
1 20 0.62831853
2 200 0.62831853 0 N/A
3 20 0.64402649 0 N/A
4 200 0.64402649 0 N/A
5 200 0.64402649 0.2 1.27234502
6 200 0.64402649 0.2 0.79168135




Question 2


Question 3


Back to ECE438, Fall 2010, Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett