Line 27: Line 27:
 
<math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]e^{-st} </math>
 
<math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]e^{-st} </math>
  
<math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]</math> DONE?
+
<math>\mathcal [e^{-st}] = 1 therefore
 +
 
 +
<math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]</math>
 +
 
 +
DONE?
  
  

Revision as of 20:08, 6 October 2010

Homework 6 collaboration area

Here is something to get you started:

$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt $

$ \mathcal{L}[f'(t)]= sF(s)-f(0) $

p. 226: 1.

$ \mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2} $

Odd solutions in the back of the book.

p. 226: #2: who can validate this?

$ \mathcal(t^2 - 3)^2 $

$ \mathcal[F(s)] = {L}f(t) = \int_0^\infty e^{-st}f(t)\ dt $

$ \mathcal[f(t)] = (t^2 - 3)(t^2 - 3) = t^4 - 9t^2 + 9 $

$ \mathcal[F(s)] = \int_0^\infty e^{-st}(t^4 - 9t^2 + 9)\ dt $

$ \mathcal[F(s)] = \int_0^\infty [t^4 e^{-st} - 9t^2 e^{-st} + 9 e^{-st}]\ dt $

$ \mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]e^{-st} $

$ \mathcal [e^{-st}] = 1 therefore <math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}] $

DONE?


-Does anyone have a hint on solving #23?


Even solutions (added by Adam M on Oct 5, please check results):

p. 226: 10.

$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $

p. 226: 12.

$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $

p. 226: 30.

$ inverse \mathcal{L}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $

(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get

$ inverse \mathcal{L}=-e^{-4t}+3e^{4t} $


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang